DAIS - Digital Archive of the Serbian Academy of Sciences and Arts
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   DAIS
  • Институт техничких наука САНУ / Institute of Technical Sciences of SASA
  • ИТН САНУ - Општа колекција / ITS SASA - General collection
  • View Item
  •   DAIS
  • Институт техничких наука САНУ / Institute of Technical Sciences of SASA
  • ИТН САНУ - Општа колекција / ITS SASA - General collection
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

An innovative, quick and convenient labeling method for the investigation of pharmacological behavior and the metabolism of poly(DL-lactide-co-glycolide) nanospheres

Authorized Users Only
2009
Authors
Stevanović, Magdalena
Maksin, Tatjana
Petković, Jana
Filipič, Metka
Uskoković, Dragan
Article (Published version)
Metadata
Show full item record
Abstract
Nanoparticles of poly(DL-lactide-co-glycolide) (PLGA) in the size range 90-150 nm were produced using the physicochemical method with solvent/non-solvent systems. The encapsulation of the ascorbic acid in the polymer matrix was performed by homogenization of the water and organic phases. In vitro degradation and release tests of PLGA nanoparticles with and without encapsulated ascorbic acid were studied for more than 60 days in PBS and it has been determined that PLGA completely degrades within this period, fully releasing all encapsulated ascorbic acid. The cytotoxicity of PLGA and PLGA/ascorbic acid 85/15% nanoparticles was examined with human hepatoma cell lines (HepG2 ECACC), in vitro. The obtained results indicate that neither PLGA nanospheres nor PLGA/ascorbic acid 85/15% nanoparticles significantly affected the viability of the HepG2 cells. The investigation of the distribution and pharmacokinetics of PLGA is crucial for the effective prediction of host responses to PLGA in part...icular applications. Thus we present a method of labeling PLGA nanospheres and PLGA/ascorbic acid 85/15 wt% nanoparticles by (99m)Tc which binds outside, leaving the cage intact. This enables a quick and convenient investigation of the pharmacological behavior and metabolism of PLGA. The biodistribution of (99m)Tc-labeled PLGA particles with and without encapsulated ascorbic acid after different periods of time of their installation into rats was examined. PLGA nanospheres with encapsulated ascorbic acid exhibit prolonged blood circulation accompanied by time-dependent reduction in the lungs, liver and spleen, and addition in the kidney, stomach and intestine. The samples were characterized by x-ray diffraction, scanning electron microscopy, stereological analysis, transmission electron microscopy, ultraviolet spectroscopy and instant thin layer chromatography.

Source:
Nanotechnology, 2009, 20, 33
Publisher:
  • Bristol : IOP Science
Funding / projects:
  • Sinteza funkcionalnih materijala sa kontrolisanom strukturom na molekularnom i nano nivou (RS-142006)

DOI: 10.1088/0957-4484/20/33/335102

ISSN: 0957-4484 (print)

PubMed: 19636100

WoS: 000268480500003

Scopus: 2-s2.0-70249129749
[ Google Scholar ]
27
22
Handle
https://hdl.handle.net/21.15107/rcub_dais_2740
URI
https://dais.sanu.ac.rs/123456789/2740
Collections
  • ИТН САНУ - Општа колекција / ITS SASA - General collection
Institution/Community
Институт техничких наука САНУ / Institute of Technical Sciences of SASA
TY  - JOUR
AU  - Stevanović, Magdalena
AU  - Maksin, Tatjana
AU  - Petković, Jana
AU  - Filipič, Metka
AU  - Uskoković, Dragan
PY  - 2009
UR  - https://dais.sanu.ac.rs/123456789/2740
AB  - Nanoparticles of poly(DL-lactide-co-glycolide) (PLGA) in the size range 90-150 nm were produced using the physicochemical method with solvent/non-solvent systems. The encapsulation of the ascorbic acid in the polymer matrix was performed by homogenization of the water and organic phases. In vitro degradation and release tests of PLGA nanoparticles with and without encapsulated ascorbic acid were studied for more than 60 days in PBS and it has been determined that PLGA completely degrades within this period, fully releasing all encapsulated ascorbic acid. The cytotoxicity of PLGA and PLGA/ascorbic acid 85/15% nanoparticles was examined with human hepatoma cell lines (HepG2 ECACC), in vitro. The obtained results indicate that neither PLGA nanospheres nor PLGA/ascorbic acid 85/15% nanoparticles significantly affected the viability of the HepG2 cells. The investigation of the distribution and pharmacokinetics of PLGA is crucial for the effective prediction of host responses to PLGA in particular applications. Thus we present a method of labeling PLGA nanospheres and PLGA/ascorbic acid 85/15 wt% nanoparticles by (99m)Tc which binds outside, leaving the cage intact. This enables a quick and convenient investigation of the pharmacological behavior and metabolism of PLGA. The biodistribution of (99m)Tc-labeled PLGA particles with and without encapsulated ascorbic acid after different periods of time of their installation into rats was examined. PLGA nanospheres with encapsulated ascorbic acid exhibit prolonged blood circulation accompanied by time-dependent reduction in the lungs, liver and spleen, and addition in the kidney, stomach and intestine. The samples were characterized by x-ray diffraction, scanning electron microscopy, stereological analysis, transmission electron microscopy, ultraviolet spectroscopy and instant thin layer chromatography.
PB  - Bristol : IOP Science
T2  - Nanotechnology
T1  - An innovative, quick and convenient labeling method for the investigation of pharmacological behavior and the metabolism of poly(DL-lactide-co-glycolide) nanospheres
VL  - 20
IS  - 33
DO  - 10.1088/0957-4484/20/33/335102
UR  - https://hdl.handle.net/21.15107/rcub_dais_2740
ER  - 
@article{
author = "Stevanović, Magdalena and Maksin, Tatjana and Petković, Jana and Filipič, Metka and Uskoković, Dragan",
year = "2009",
abstract = "Nanoparticles of poly(DL-lactide-co-glycolide) (PLGA) in the size range 90-150 nm were produced using the physicochemical method with solvent/non-solvent systems. The encapsulation of the ascorbic acid in the polymer matrix was performed by homogenization of the water and organic phases. In vitro degradation and release tests of PLGA nanoparticles with and without encapsulated ascorbic acid were studied for more than 60 days in PBS and it has been determined that PLGA completely degrades within this period, fully releasing all encapsulated ascorbic acid. The cytotoxicity of PLGA and PLGA/ascorbic acid 85/15% nanoparticles was examined with human hepatoma cell lines (HepG2 ECACC), in vitro. The obtained results indicate that neither PLGA nanospheres nor PLGA/ascorbic acid 85/15% nanoparticles significantly affected the viability of the HepG2 cells. The investigation of the distribution and pharmacokinetics of PLGA is crucial for the effective prediction of host responses to PLGA in particular applications. Thus we present a method of labeling PLGA nanospheres and PLGA/ascorbic acid 85/15 wt% nanoparticles by (99m)Tc which binds outside, leaving the cage intact. This enables a quick and convenient investigation of the pharmacological behavior and metabolism of PLGA. The biodistribution of (99m)Tc-labeled PLGA particles with and without encapsulated ascorbic acid after different periods of time of their installation into rats was examined. PLGA nanospheres with encapsulated ascorbic acid exhibit prolonged blood circulation accompanied by time-dependent reduction in the lungs, liver and spleen, and addition in the kidney, stomach and intestine. The samples were characterized by x-ray diffraction, scanning electron microscopy, stereological analysis, transmission electron microscopy, ultraviolet spectroscopy and instant thin layer chromatography.",
publisher = "Bristol : IOP Science",
journal = "Nanotechnology",
title = "An innovative, quick and convenient labeling method for the investigation of pharmacological behavior and the metabolism of poly(DL-lactide-co-glycolide) nanospheres",
volume = "20",
number = "33",
doi = "10.1088/0957-4484/20/33/335102",
url = "https://hdl.handle.net/21.15107/rcub_dais_2740"
}
Stevanović, M., Maksin, T., Petković, J., Filipič, M.,& Uskoković, D.. (2009). An innovative, quick and convenient labeling method for the investigation of pharmacological behavior and the metabolism of poly(DL-lactide-co-glycolide) nanospheres. in Nanotechnology
Bristol : IOP Science., 20(33).
https://doi.org/10.1088/0957-4484/20/33/335102
https://hdl.handle.net/21.15107/rcub_dais_2740
Stevanović M, Maksin T, Petković J, Filipič M, Uskoković D. An innovative, quick and convenient labeling method for the investigation of pharmacological behavior and the metabolism of poly(DL-lactide-co-glycolide) nanospheres. in Nanotechnology. 2009;20(33).
doi:10.1088/0957-4484/20/33/335102
https://hdl.handle.net/21.15107/rcub_dais_2740 .
Stevanović, Magdalena, Maksin, Tatjana, Petković, Jana, Filipič, Metka, Uskoković, Dragan, "An innovative, quick and convenient labeling method for the investigation of pharmacological behavior and the metabolism of poly(DL-lactide-co-glycolide) nanospheres" in Nanotechnology, 20, no. 33 (2009),
https://doi.org/10.1088/0957-4484/20/33/335102 .,
https://hdl.handle.net/21.15107/rcub_dais_2740 .

DSpace software copyright © 2002-2015  DuraSpace
About DAIS - Digital Archive of the Serbian Academy of Sciences and Arts | Send Feedback

CoreTrustSealre3dataOpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About DAIS - Digital Archive of the Serbian Academy of Sciences and Arts | Send Feedback

CoreTrustSealre3dataOpenAIRERCUB