DAIS - Digital Archive of the Serbian Academy of Sciences and Arts
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   DAIS
  • Институт техничких наука САНУ / Institute of Technical Sciences of SASA
  • ИТН САНУ - Општа колекција / ITS SASA - General collection
  • View Item
  •   DAIS
  • Институт техничких наука САНУ / Institute of Technical Sciences of SASA
  • ИТН САНУ - Општа колекција / ITS SASA - General collection
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The influence of mechanical activation on structural evolution of nanocrystalline SrTiO3 powders

Authorized Users Only
2017
Authors
Živojinović, Jelena
Pavlović, Vera P.
Kosanović, Darko
Marković, Smilja
Krstić, Jugoslav
Blagojević, Vladimir A.
Pavlović, Vladimir B.
Article (Published version)
Metadata
Show full item record
Abstract
Structural changes caused by mechanical activation of SrTiO3 powders were investigated using a variety of methods. Average crystallite size continuously decreased with increased activation time to around 20 nm after 120 min activation, while mesopore volume and specific surface area increased accordingly. Higher activation times lead to increased agglomeration of nanoparticles to form agglomerates of around 2 μm in size, ultimately producing a relatively stable powder, which exhibits lower microstrain than powders activated for shorter periods of time. Raman spectroscopy shows that the behavior of TO2 and TO4 modes is consistent with a decrease in particle size, while behavior of the nonpolar TO3 mode is markedly different, indicating relaxation of the inversion symmetry in polycrystalline SrTiO3. UV-VIS spectra show that mechanical activation has negligible effect on SrTiO3, with a slight shift caused by TiO2 contamination due to presence of air. Other than this, the mechanical activa...tion process preserves the chemical purity of the initial powder.

Keywords:
mechanical activation / SrTiO3 / microstructure / ball milling / size dependence
Source:
Journal of Alloys and Compounds, 2017, 695, 863-870
Publisher:
  • Elsevier
Funding / projects:
  • Directed synthesis, structure and properties of multifunctional materials (RS-172057)
Note:
  • Peer-reviewed manuscript: https://hdl.handle.net/21.15107/rcub_dais_4617

DOI: 10.1016/j.jallcom.2016.10.159

ISSN: 0925-8388

WoS: 000391817600104

Scopus: 2-s2.0-85005917614
[ Google Scholar ]
21
13
Handle
https://hdl.handle.net/21.15107/rcub_dais_2355
URI
https://dais.sanu.ac.rs/123456789/2355
Collections
  • ИТН САНУ - Општа колекција / ITS SASA - General collection
Institution/Community
Институт техничких наука САНУ / Institute of Technical Sciences of SASA
TY  - JOUR
AU  - Živojinović, Jelena
AU  - Pavlović, Vera P.
AU  - Kosanović, Darko
AU  - Marković, Smilja
AU  - Krstić, Jugoslav
AU  - Blagojević, Vladimir A.
AU  - Pavlović, Vladimir B.
PY  - 2017
UR  - https://dais.sanu.ac.rs/123456789/2355
AB  - Structural changes caused by mechanical activation of SrTiO3 powders were investigated using a variety of methods. Average crystallite size continuously decreased with increased activation time to around 20 nm after 120 min activation, while mesopore volume and specific surface area increased accordingly. Higher activation times lead to increased agglomeration of nanoparticles to form agglomerates of around 2 μm in size, ultimately producing a relatively stable powder, which exhibits lower microstrain than powders activated for shorter periods of time. Raman spectroscopy shows that the behavior of TO2 and TO4 modes is consistent with a decrease in particle size, while behavior of the nonpolar TO3 mode is markedly different, indicating relaxation of the inversion symmetry in polycrystalline SrTiO3. UV-VIS spectra show that mechanical activation has negligible effect on SrTiO3, with a slight shift caused by TiO2 contamination due to presence of air. Other than this, the mechanical activation process preserves the chemical purity of the initial powder.
PB  - Elsevier
T2  - Journal of Alloys and Compounds
T1  - The influence of mechanical activation on structural evolution of nanocrystalline SrTiO3 powders
SP  - 863
EP  - 870
VL  - 695
DO  - 10.1016/j.jallcom.2016.10.159
UR  - https://hdl.handle.net/21.15107/rcub_dais_2355
ER  - 
@article{
author = "Živojinović, Jelena and Pavlović, Vera P. and Kosanović, Darko and Marković, Smilja and Krstić, Jugoslav and Blagojević, Vladimir A. and Pavlović, Vladimir B.",
year = "2017",
abstract = "Structural changes caused by mechanical activation of SrTiO3 powders were investigated using a variety of methods. Average crystallite size continuously decreased with increased activation time to around 20 nm after 120 min activation, while mesopore volume and specific surface area increased accordingly. Higher activation times lead to increased agglomeration of nanoparticles to form agglomerates of around 2 μm in size, ultimately producing a relatively stable powder, which exhibits lower microstrain than powders activated for shorter periods of time. Raman spectroscopy shows that the behavior of TO2 and TO4 modes is consistent with a decrease in particle size, while behavior of the nonpolar TO3 mode is markedly different, indicating relaxation of the inversion symmetry in polycrystalline SrTiO3. UV-VIS spectra show that mechanical activation has negligible effect on SrTiO3, with a slight shift caused by TiO2 contamination due to presence of air. Other than this, the mechanical activation process preserves the chemical purity of the initial powder.",
publisher = "Elsevier",
journal = "Journal of Alloys and Compounds",
title = "The influence of mechanical activation on structural evolution of nanocrystalline SrTiO3 powders",
pages = "863-870",
volume = "695",
doi = "10.1016/j.jallcom.2016.10.159",
url = "https://hdl.handle.net/21.15107/rcub_dais_2355"
}
Živojinović, J., Pavlović, V. P., Kosanović, D., Marković, S., Krstić, J., Blagojević, V. A.,& Pavlović, V. B.. (2017). The influence of mechanical activation on structural evolution of nanocrystalline SrTiO3 powders. in Journal of Alloys and Compounds
Elsevier., 695, 863-870.
https://doi.org/10.1016/j.jallcom.2016.10.159
https://hdl.handle.net/21.15107/rcub_dais_2355
Živojinović J, Pavlović VP, Kosanović D, Marković S, Krstić J, Blagojević VA, Pavlović VB. The influence of mechanical activation on structural evolution of nanocrystalline SrTiO3 powders. in Journal of Alloys and Compounds. 2017;695:863-870.
doi:10.1016/j.jallcom.2016.10.159
https://hdl.handle.net/21.15107/rcub_dais_2355 .
Živojinović, Jelena, Pavlović, Vera P., Kosanović, Darko, Marković, Smilja, Krstić, Jugoslav, Blagojević, Vladimir A., Pavlović, Vladimir B., "The influence of mechanical activation on structural evolution of nanocrystalline SrTiO3 powders" in Journal of Alloys and Compounds, 695 (2017):863-870,
https://doi.org/10.1016/j.jallcom.2016.10.159 .,
https://hdl.handle.net/21.15107/rcub_dais_2355 .

DSpace software copyright © 2002-2015  DuraSpace
About DAIS - Digital Archive of the Serbian Academy of Sciences and Arts | Send Feedback

CoreTrustSealre3dataOpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About DAIS - Digital Archive of the Serbian Academy of Sciences and Arts | Send Feedback

CoreTrustSealre3dataOpenAIRERCUB