DAIS - Digital Archive of the Serbian Academy of Sciences and Arts
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   DAIS
  • Институт техничких наука САНУ / Institute of Technical Sciences of SASA
  • ИТН САНУ - Општа колекција / ITS SASA - General collection
  • View Item
  •   DAIS
  • Институт техничких наука САНУ / Institute of Technical Sciences of SASA
  • ИТН САНУ - Општа колекција / ITS SASA - General collection
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Simultaneous enhancement of natural sunlight- and artificial UV-driven photocatalytic activity of a mechanically activated ZnO/SnO2 composite

Thumbnail
2017
2425.pdf (2.932Mb)
Authors
Marković, Smilja
Stanković, Ana
Dostanić, Jasmina
Veselinović, Ljiljana
Mančić, Lidija
Škapin, Srečo Davor
Dražić, Goran
Janković Častvan, Ivona
Uskoković, Dragan
Article (Published version)
Metadata
Show full item record
Abstract
Mechanical milling of commercial ZnO and SnO2 was used to produce a ZnO/SnO2 composite with a high density of surface defects; in particular, zinc interstitials (Zni) and oxygen vacancies (VO). To determine the impact of surface defects on photocatalytic activity, the relative concentration ratio of bulk defects to surface defects was modified by annealing at 400 and 700 °C. The possible application of the ZnO/SnO2 composite as a natural sunlight and UV-light driven photocatalyst was revealed via de-colorization of methylene blue. In both cases the ZnO/SnO2 composite exhibited enhanced photocatalytic activity as compared to the pristine ZnO. In order to investigate the origin of the enhancement, the pristine metal oxides and composites were characterized using a variety of techniques, including X-ray diffraction (XRD), Raman and Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FESEM), laser diffraction particle size analysis, Brunauer–Emmett–...Teller, UV-Vis diffuse reflectance and photoluminescence spectroscopy. High-resolution transmission electron microscopy (HRTEM) and elemental mapping analyses were used to reveal the presence of SnO2 nanocrystallites on the surface of larger ZnO particles. The enhanced photocatalytic activity of the composite can be attributed to the synergetic effect of the surface defects and the ZnO/SnO2 heterojunction particles, which facilitated charge separation, thereby hindering the recombination of photogenerated carriers. This study draws attention to mechanical activation as an inexpensive and environmentally friendly technique for the large-scale production of the composite with an enhanced photocatalytic activity under illumination of either UV or sunlight.

Keywords:
photocatalytic activity / mechanical activation / ZnO and SnO2
Source:
RSC Advances, 2017, 7, 42725-42737
Publisher:
  • Royal Society of Chemistry
Funding / projects:
  • Molecular designing of nanoparticles with controlled morphological and physicochemical characteristics and functional materials based on them (RS-45004)

DOI: 10.1039/C7RA06895F

ISSN: 2046-2069

WoS: 000409548200012

Scopus: 2-s2.0-85029113368
[ Google Scholar ]
26
18
Handle
https://hdl.handle.net/21.15107/rcub_dais_2346
URI
https://dais.sanu.ac.rs/123456789/2346
Collections
  • ИТН САНУ - Општа колекција / ITS SASA - General collection
Institution/Community
Институт техничких наука САНУ / Institute of Technical Sciences of SASA
TY  - JOUR
AU  - Marković, Smilja
AU  - Stanković, Ana
AU  - Dostanić, Jasmina
AU  - Veselinović, Ljiljana
AU  - Mančić, Lidija
AU  - Škapin, Srečo Davor
AU  - Dražić, Goran
AU  - Janković Častvan, Ivona
AU  - Uskoković, Dragan
PY  - 2017
UR  - https://dais.sanu.ac.rs/123456789/2346
AB  - Mechanical milling of commercial ZnO and SnO2 was used to produce a ZnO/SnO2 composite with a high density of surface defects; in particular, zinc interstitials (Zni) and oxygen vacancies (VO). To determine the impact of surface defects on photocatalytic activity, the relative concentration ratio of bulk defects to surface defects was modified by annealing at 400 and 700 °C. The possible application of the ZnO/SnO2 composite as a natural sunlight and UV-light driven photocatalyst was revealed via de-colorization of methylene blue. In both cases the ZnO/SnO2 composite exhibited enhanced photocatalytic activity as compared to the pristine ZnO. In order to investigate the origin of the enhancement, the pristine metal oxides and composites were characterized using a variety of techniques, including X-ray diffraction (XRD), Raman and Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FESEM), laser diffraction particle size analysis, Brunauer–Emmett–Teller, UV-Vis diffuse reflectance and photoluminescence spectroscopy. High-resolution transmission electron microscopy (HRTEM) and elemental mapping analyses were used to reveal the presence of SnO2 nanocrystallites on the surface of larger ZnO particles. The enhanced photocatalytic activity of the composite can be attributed to the synergetic effect of the surface defects and the ZnO/SnO2 heterojunction particles, which facilitated charge separation, thereby hindering the recombination of photogenerated carriers. This study draws attention to mechanical activation as an inexpensive and environmentally friendly technique for the large-scale production of the composite with an enhanced photocatalytic activity under illumination of either UV or sunlight.
PB  - Royal Society of Chemistry
T2  - RSC Advances
T1  - Simultaneous enhancement of natural sunlight- and artificial UV-driven photocatalytic activity of a mechanically activated ZnO/SnO2 composite
SP  - 42725
EP  - 42737
VL  - 7
DO  - 10.1039/C7RA06895F
UR  - https://hdl.handle.net/21.15107/rcub_dais_2346
ER  - 
@article{
author = "Marković, Smilja and Stanković, Ana and Dostanić, Jasmina and Veselinović, Ljiljana and Mančić, Lidija and Škapin, Srečo Davor and Dražić, Goran and Janković Častvan, Ivona and Uskoković, Dragan",
year = "2017",
abstract = "Mechanical milling of commercial ZnO and SnO2 was used to produce a ZnO/SnO2 composite with a high density of surface defects; in particular, zinc interstitials (Zni) and oxygen vacancies (VO). To determine the impact of surface defects on photocatalytic activity, the relative concentration ratio of bulk defects to surface defects was modified by annealing at 400 and 700 °C. The possible application of the ZnO/SnO2 composite as a natural sunlight and UV-light driven photocatalyst was revealed via de-colorization of methylene blue. In both cases the ZnO/SnO2 composite exhibited enhanced photocatalytic activity as compared to the pristine ZnO. In order to investigate the origin of the enhancement, the pristine metal oxides and composites were characterized using a variety of techniques, including X-ray diffraction (XRD), Raman and Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FESEM), laser diffraction particle size analysis, Brunauer–Emmett–Teller, UV-Vis diffuse reflectance and photoluminescence spectroscopy. High-resolution transmission electron microscopy (HRTEM) and elemental mapping analyses were used to reveal the presence of SnO2 nanocrystallites on the surface of larger ZnO particles. The enhanced photocatalytic activity of the composite can be attributed to the synergetic effect of the surface defects and the ZnO/SnO2 heterojunction particles, which facilitated charge separation, thereby hindering the recombination of photogenerated carriers. This study draws attention to mechanical activation as an inexpensive and environmentally friendly technique for the large-scale production of the composite with an enhanced photocatalytic activity under illumination of either UV or sunlight.",
publisher = "Royal Society of Chemistry",
journal = "RSC Advances",
title = "Simultaneous enhancement of natural sunlight- and artificial UV-driven photocatalytic activity of a mechanically activated ZnO/SnO2 composite",
pages = "42725-42737",
volume = "7",
doi = "10.1039/C7RA06895F",
url = "https://hdl.handle.net/21.15107/rcub_dais_2346"
}
Marković, S., Stanković, A., Dostanić, J., Veselinović, L., Mančić, L., Škapin, S. D., Dražić, G., Janković Častvan, I.,& Uskoković, D.. (2017). Simultaneous enhancement of natural sunlight- and artificial UV-driven photocatalytic activity of a mechanically activated ZnO/SnO2 composite. in RSC Advances
Royal Society of Chemistry., 7, 42725-42737.
https://doi.org/10.1039/C7RA06895F
https://hdl.handle.net/21.15107/rcub_dais_2346
Marković S, Stanković A, Dostanić J, Veselinović L, Mančić L, Škapin SD, Dražić G, Janković Častvan I, Uskoković D. Simultaneous enhancement of natural sunlight- and artificial UV-driven photocatalytic activity of a mechanically activated ZnO/SnO2 composite. in RSC Advances. 2017;7:42725-42737.
doi:10.1039/C7RA06895F
https://hdl.handle.net/21.15107/rcub_dais_2346 .
Marković, Smilja, Stanković, Ana, Dostanić, Jasmina, Veselinović, Ljiljana, Mančić, Lidija, Škapin, Srečo Davor, Dražić, Goran, Janković Častvan, Ivona, Uskoković, Dragan, "Simultaneous enhancement of natural sunlight- and artificial UV-driven photocatalytic activity of a mechanically activated ZnO/SnO2 composite" in RSC Advances, 7 (2017):42725-42737,
https://doi.org/10.1039/C7RA06895F .,
https://hdl.handle.net/21.15107/rcub_dais_2346 .

DSpace software copyright © 2002-2015  DuraSpace
About DAIS - Digital Archive of the Serbian Academy of Sciences and Arts | Send Feedback

CoreTrustSealre3dataOpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About DAIS - Digital Archive of the Serbian Academy of Sciences and Arts | Send Feedback

CoreTrustSealre3dataOpenAIRERCUB