DAIS - Digital Archive of the Serbian Academy of Sciences and Arts
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   DAIS
  • Институт техничких наука САНУ / Institute of Technical Sciences of SASA
  • ИТН САНУ - Општа колекција / ITS SASA - General collection
  • View Item
  •   DAIS
  • Институт техничких наука САНУ / Institute of Technical Sciences of SASA
  • ИТН САНУ - Општа колекција / ITS SASA - General collection
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The processing of optically active functional hierarchical nanoparticles

Authorized Users Only
2017
Authors
Mančić, Lidija
Nikolić, M.
Gómez, Luz Stella
Rabanal, Maria Eugenia
Milošević, Olivera
Article (Published version)
Metadata
Show full item record
Abstract
Global climate changes and the aroused environmentally-energy problems categorically moved the research efforts towards programmed processing of a novel class of hierarchical materials having well defined phase, compositional and morphological features. The synthesis based on the principles of the molecular design and integrative chemistry which includes the innovative aerosol and hydro(solvo)thermal nanotechnology routes, the building block assembling and hybridization, represent intelligent platform for the creation of advanced functional materials. Due to exceptional optical properties and a diverse application in electronics, optoelectronics, energy conversion/storage and biomedicine, the examples from some wide band gap oxides for light harvesting and photocatalytic applications as well as both down and up-conversion energy-saving luminescent materials for photonic and biological applications are considered. With the help of various analyzing techniques like XRPD (X-ray powder dif...fraction), field emission scanning electron microscopy (FE-SEM), energy dispersive spectroscopy (EDS), analytical and high resolution transmission electron microscopy (TEM, HR-TEM), selected area electron diffraction (SAED), scanning tunneling electron microscopy (STEM), Fourier transform infrared (FTIR) and Raman spectroscopy, photocatalytic and fluorescence measurements, the opportunities of the aerosol and hydro(solvo)thermal routes for the synthesis of novel hierarchically and hybrid assembled structures and nanocomposites are reviewed highlighting the recent research activities realized in the Institute of Technical Sciences of SASA, Belgrade, Serbia and University Carlos III, Madrid, Spain. The morphological, structural and functional aspects of the following systems: ZnO, TiO2, Y2O3:Eu,Yb/Er/T/Hm, Y2O3:Eu@Ag, (Y1−xGdx)2O3:Eu, (NaYF4:Yb/Er)@EDTA/PEG/PVP, are discussed from the state-of-the art and literature contexts. Controlled growth of 1D and 3D hierarchical structures based on the single-source processing methodology in combination with the homogeneous precipitation of optically active intermediate precursor are especially stressed for the case of yttria based phosphor particles and phase-dependent luminescence efficiency. The obtained results offer possible routes for the synthesis of hierarchically structured nanomaterials with tunable structure, morphology and optical properties.

Keywords:
hierarchical structures / soft chemical routes / down-conversion / up-conversion / TiO2 / ZnO / nanoparticles
Source:
Advanced Powder Technology, 2017, 28, 1, 3-22
Publisher:
  • Elsevier
Funding / projects:
  • Rational design and synthesis of biologically active and coordination compounds and functional materials, relevant for (bio)nanotechnology (RS-172035)
  • Materials of Reduced Dimensions for Efficient Light Harvesting and Energy conversion (RS-45020)
  • Community of Madrid, Spain, Project GEOMATERIALES II (S2013/MIT-2914)

DOI: 10.1016/j.apt.2016.09.018

ISSN: 0921-8831

WoS: 000395355100002

Scopus: 2-s2.0-85005965863
[ Google Scholar ]
9
7
Handle
https://hdl.handle.net/21.15107/rcub_dais_2344
URI
https://dais.sanu.ac.rs/123456789/2344
Collections
  • ИТН САНУ - Општа колекција / ITS SASA - General collection
Institution/Community
Институт техничких наука САНУ / Institute of Technical Sciences of SASA
TY  - JOUR
AU  - Mančić, Lidija
AU  - Nikolić, M.
AU  - Gómez, Luz Stella
AU  - Rabanal, Maria Eugenia
AU  - Milošević, Olivera
PY  - 2017
UR  - https://dais.sanu.ac.rs/123456789/2344
AB  - Global climate changes and the aroused environmentally-energy problems categorically moved the research efforts towards programmed processing of a novel class of hierarchical materials having well defined phase, compositional and morphological features. The synthesis based on the principles of the molecular design and integrative chemistry which includes the innovative aerosol and hydro(solvo)thermal nanotechnology routes, the building block assembling and hybridization, represent intelligent platform for the creation of advanced functional materials. Due to exceptional optical properties and a diverse application in electronics, optoelectronics, energy conversion/storage and biomedicine, the examples from some wide band gap oxides for light harvesting and photocatalytic applications as well as both down and up-conversion energy-saving luminescent materials for photonic and biological applications are considered. With the help of various analyzing techniques like XRPD (X-ray powder diffraction), field emission scanning electron microscopy (FE-SEM), energy dispersive spectroscopy (EDS), analytical and high resolution transmission electron microscopy (TEM, HR-TEM), selected area electron diffraction (SAED), scanning tunneling electron microscopy (STEM), Fourier transform infrared (FTIR) and Raman spectroscopy, photocatalytic and fluorescence measurements, the opportunities of the aerosol and hydro(solvo)thermal routes for the synthesis of novel hierarchically and hybrid assembled structures and nanocomposites are reviewed highlighting the recent research activities realized in the Institute of Technical Sciences of SASA, Belgrade, Serbia and University Carlos III, Madrid, Spain. The morphological, structural and functional aspects of the following systems: ZnO, TiO2, Y2O3:Eu,Yb/Er/T/Hm, Y2O3:Eu@Ag, (Y1−xGdx)2O3:Eu, (NaYF4:Yb/Er)@EDTA/PEG/PVP, are discussed from the state-of-the art and literature contexts. Controlled growth of 1D and 3D hierarchical structures based on the single-source processing methodology in combination with the homogeneous precipitation of optically active intermediate precursor are especially stressed for the case of yttria based phosphor particles and phase-dependent luminescence efficiency. The obtained results offer possible routes for the synthesis of hierarchically structured nanomaterials with tunable structure, morphology and optical properties.
PB  - Elsevier
T2  - Advanced Powder Technology
T1  - The processing of optically active functional hierarchical nanoparticles
SP  - 3
EP  - 22
VL  - 28
IS  - 1
DO  - 10.1016/j.apt.2016.09.018
UR  - https://hdl.handle.net/21.15107/rcub_dais_2344
ER  - 
@article{
author = "Mančić, Lidija and Nikolić, M. and Gómez, Luz Stella and Rabanal, Maria Eugenia and Milošević, Olivera",
year = "2017",
abstract = "Global climate changes and the aroused environmentally-energy problems categorically moved the research efforts towards programmed processing of a novel class of hierarchical materials having well defined phase, compositional and morphological features. The synthesis based on the principles of the molecular design and integrative chemistry which includes the innovative aerosol and hydro(solvo)thermal nanotechnology routes, the building block assembling and hybridization, represent intelligent platform for the creation of advanced functional materials. Due to exceptional optical properties and a diverse application in electronics, optoelectronics, energy conversion/storage and biomedicine, the examples from some wide band gap oxides for light harvesting and photocatalytic applications as well as both down and up-conversion energy-saving luminescent materials for photonic and biological applications are considered. With the help of various analyzing techniques like XRPD (X-ray powder diffraction), field emission scanning electron microscopy (FE-SEM), energy dispersive spectroscopy (EDS), analytical and high resolution transmission electron microscopy (TEM, HR-TEM), selected area electron diffraction (SAED), scanning tunneling electron microscopy (STEM), Fourier transform infrared (FTIR) and Raman spectroscopy, photocatalytic and fluorescence measurements, the opportunities of the aerosol and hydro(solvo)thermal routes for the synthesis of novel hierarchically and hybrid assembled structures and nanocomposites are reviewed highlighting the recent research activities realized in the Institute of Technical Sciences of SASA, Belgrade, Serbia and University Carlos III, Madrid, Spain. The morphological, structural and functional aspects of the following systems: ZnO, TiO2, Y2O3:Eu,Yb/Er/T/Hm, Y2O3:Eu@Ag, (Y1−xGdx)2O3:Eu, (NaYF4:Yb/Er)@EDTA/PEG/PVP, are discussed from the state-of-the art and literature contexts. Controlled growth of 1D and 3D hierarchical structures based on the single-source processing methodology in combination with the homogeneous precipitation of optically active intermediate precursor are especially stressed for the case of yttria based phosphor particles and phase-dependent luminescence efficiency. The obtained results offer possible routes for the synthesis of hierarchically structured nanomaterials with tunable structure, morphology and optical properties.",
publisher = "Elsevier",
journal = "Advanced Powder Technology",
title = "The processing of optically active functional hierarchical nanoparticles",
pages = "3-22",
volume = "28",
number = "1",
doi = "10.1016/j.apt.2016.09.018",
url = "https://hdl.handle.net/21.15107/rcub_dais_2344"
}
Mančić, L., Nikolić, M., Gómez, L. S., Rabanal, M. E.,& Milošević, O.. (2017). The processing of optically active functional hierarchical nanoparticles. in Advanced Powder Technology
Elsevier., 28(1), 3-22.
https://doi.org/10.1016/j.apt.2016.09.018
https://hdl.handle.net/21.15107/rcub_dais_2344
Mančić L, Nikolić M, Gómez LS, Rabanal ME, Milošević O. The processing of optically active functional hierarchical nanoparticles. in Advanced Powder Technology. 2017;28(1):3-22.
doi:10.1016/j.apt.2016.09.018
https://hdl.handle.net/21.15107/rcub_dais_2344 .
Mančić, Lidija, Nikolić, M., Gómez, Luz Stella, Rabanal, Maria Eugenia, Milošević, Olivera, "The processing of optically active functional hierarchical nanoparticles" in Advanced Powder Technology, 28, no. 1 (2017):3-22,
https://doi.org/10.1016/j.apt.2016.09.018 .,
https://hdl.handle.net/21.15107/rcub_dais_2344 .

DSpace software copyright © 2002-2015  DuraSpace
About DAIS - Digital Archive of the Serbian Academy of Sciences and Arts | Send Feedback

re3dataOpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About DAIS - Digital Archive of the Serbian Academy of Sciences and Arts | Send Feedback

re3dataOpenAIRERCUB