DAIS - Digital Archive of the Serbian Academy of Sciences and Arts
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrilic)
    • Serbian (Latin)
  • Login
View Item 
  •   DAIS
  • Институт техничких наука САНУ / Institute of Technical Sciences of SASA
  • ITN SANU - Opšta kolekcija / ITS SASA - General collection
  • View Item
  •   DAIS
  • Институт техничких наука САНУ / Institute of Technical Sciences of SASA
  • ITN SANU - Opšta kolekcija / ITS SASA - General collection
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Synthesis and sintering of high-temperature composites based on mechanically activated fly ash

Thumbnail
2012
190.pdf (837.7Kb)
Authors
Terzić, Anja
Pavlović, Ljubica
Obradović, Nina
Pavlović, Vladimir B.
Stojanović, J.
Miličić, Lj.
Radojević, Zagorka
Ristić, Momčilo M.
Contributors
Ristić, Momčilo M.
Article (Published version)
Metadata
Show full item record
Abstract
Amount of fly ash which is and yet to be generated in the coming years highlights the necessity of developing new methods of the recycling where this waste can be reused in significant quantity. A new possibility for fly ash utilization is in high-temperature application (thermal insulators or/and refractory material products). As such, fly ash has to adequately answer the mechanical and thermal stability criteria. One of the ways of achieving it is by applying mechanical activation procedure on fly ash. In present study, fly ashes from two different power plants were mechanically activated in a planetary ball mill. Mechanically treated fly ashes were cemented with two different binders: standard Portland cement and high-aluminates cement. Physico-chemical analysis and investigation of mineralogical components of composites are emphasized, due to the changes occurred in fly ash during mechanical activation and sintering of composites. Macro-performance of the composites was correlated ...to the microstructure of fly ash studied by means of XRD and SEM analysis. Thermal stability of crystalline phases was investigated with DTA. Highlight was placed on determination of relationship between mechanically activated fly ash and obtained composites microstructure on one side and behavior of sintered composites on the other side. [Projekat Ministarstva nauke Republike Srbije, br. 172057, 45008 and a project F-198, financed by Serbian Academy of Sciences and Arts]

Keywords:
fly ash / Mechanical activation / sintering / high-temperature performance / recycling
Source:
Science of Sintering, 2012, 44, 2, 135-146
Publisher:
  • Belgrade : International Institute for the Science of Sintering
Projects:
  • Directed synthesis, structure and properties of multifunctional materials (RS-172057)
  • Development and application of multifunctional materials using domestic raw materials in upgraded processing lines (RS-45008)

DOI: 10.2298/SOS1202135T

ISSN: 1820-7413 (Online); 0350-820X (Print)

WoS: 000318148600002

Scopus: 2-s2.0-84866409449
[ Google Scholar ]
12
10
URI
http://dais.sanu.ac.rs/123456789/193
Collections
  • ITN SANU - Opšta kolekcija / ITS SASA - General collection
Institution
Институт техничких наука САНУ / Institute of Technical Sciences of SASA
TY  - JOUR
AU  - Terzić, Anja
AU  - Pavlović, Ljubica
AU  - Obradović, Nina
AU  - Pavlović, Vladimir B.
AU  - Stojanović, J.
AU  - Miličić, Lj.
AU  - Radojević, Zagorka
AU  - Ristić, Momčilo M.
PY  - 2012
UR  - http://dais.sanu.ac.rs/123456789/193
AB  - Amount of fly ash which is and yet to be generated in the coming years highlights the necessity of developing new methods of the recycling where this waste can be reused in significant quantity. A new possibility for fly ash utilization is in high-temperature application (thermal insulators or/and refractory material products). As such, fly ash has to adequately answer the mechanical and thermal stability criteria. One of the ways of achieving it is by applying mechanical activation procedure on fly ash. In present study, fly ashes from two different power plants were mechanically activated in a planetary ball mill. Mechanically treated fly ashes were cemented with two different binders: standard Portland cement and high-aluminates cement. Physico-chemical analysis and investigation of mineralogical components of composites are emphasized, due to the changes occurred in fly ash during mechanical activation and sintering of composites. Macro-performance of the composites was correlated to the microstructure of fly ash studied by means of XRD and SEM analysis. Thermal stability of crystalline phases was investigated with DTA. Highlight was placed on determination of relationship between mechanically activated fly ash and obtained composites microstructure on one side and behavior of sintered composites on the other side. [Projekat Ministarstva nauke Republike Srbije, br. 172057, 45008 and a project F-198, financed by Serbian Academy of Sciences and Arts]
PB  - Belgrade : International Institute for the Science of Sintering
T2  - Science of Sintering
T1  - Synthesis and sintering of high-temperature composites based on mechanically activated fly ash
SP  - 135
EP  - 146
VL  - 44
IS  - 2
DO  - 10.2298/SOS1202135T
ER  - 
@article{
author = "Terzić, Anja and Pavlović, Ljubica and Obradović, Nina and Pavlović, Vladimir B. and Stojanović, J. and Miličić, Lj. and Radojević, Zagorka and Ristić, Momčilo M.",
year = "2012",
url = "http://dais.sanu.ac.rs/123456789/193",
abstract = "Amount of fly ash which is and yet to be generated in the coming years highlights the necessity of developing new methods of the recycling where this waste can be reused in significant quantity. A new possibility for fly ash utilization is in high-temperature application (thermal insulators or/and refractory material products). As such, fly ash has to adequately answer the mechanical and thermal stability criteria. One of the ways of achieving it is by applying mechanical activation procedure on fly ash. In present study, fly ashes from two different power plants were mechanically activated in a planetary ball mill. Mechanically treated fly ashes were cemented with two different binders: standard Portland cement and high-aluminates cement. Physico-chemical analysis and investigation of mineralogical components of composites are emphasized, due to the changes occurred in fly ash during mechanical activation and sintering of composites. Macro-performance of the composites was correlated to the microstructure of fly ash studied by means of XRD and SEM analysis. Thermal stability of crystalline phases was investigated with DTA. Highlight was placed on determination of relationship between mechanically activated fly ash and obtained composites microstructure on one side and behavior of sintered composites on the other side. [Projekat Ministarstva nauke Republike Srbije, br. 172057, 45008 and a project F-198, financed by Serbian Academy of Sciences and Arts]",
publisher = "Belgrade : International Institute for the Science of Sintering",
journal = "Science of Sintering",
title = "Synthesis and sintering of high-temperature composites based on mechanically activated fly ash",
pages = "135-146",
volume = "44",
number = "2",
doi = "10.2298/SOS1202135T"
}
Terzić A, Pavlović L, Obradović N, Pavlović VB, Stojanović J, Miličić L, Radojević Z, Ristić MM. Synthesis and sintering of high-temperature composites based on mechanically activated fly ash. Science of Sintering. 2012;44(2):135-146
Terzić, A., Pavlović, L., Obradović, N., Pavlović, V. B., Stojanović, J., Miličić, Lj., Radojević, Z.,& Ristić, M. M. (2012). Synthesis and sintering of high-temperature composites based on mechanically activated fly ash.
Science of SinteringBelgrade : International Institute for the Science of Sintering., 44(2), 135-146. 
https://doi.org/10.2298/SOS1202135T
Terzić Anja, Pavlović Ljubica, Obradović Nina, Pavlović Vladimir B., Stojanović J., Miličić Lj., Radojević Zagorka, Ristić Momčilo M., "Synthesis and sintering of high-temperature composites based on mechanically activated fly ash" 44, no. 2 (2012):135-146,
https://doi.org/10.2298/SOS1202135T .

DSpace software copyright © 2002-2015  DuraSpace
About DAIS - Digital Archive of the Serbian Academy of Sciences and Arts | Send Feedback

re3dataOpenAIRERCUB
 

 

All of DSpaceInstitutionsAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About DAIS - Digital Archive of the Serbian Academy of Sciences and Arts | Send Feedback

re3dataOpenAIRERCUB