DAIS - Digital Archive of the Serbian Academy of Sciences and Arts
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   DAIS
  • Институт техничких наука САНУ / Institute of Technical Sciences of SASA
  • ИТН САНУ - Општа колекција / ITS SASA - General collection
  • View Item
  •   DAIS
  • Институт техничких наука САНУ / Institute of Technical Sciences of SASA
  • ИТН САНУ - Општа колекција / ITS SASA - General collection
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Structural properties of the multiwall carbon nanotubes/poly(methyl methacrylate) nanocomposites: effect of the multiwall carbon nanotubes covalent functionalization

Authorized Users Only
2017
Authors
Brković, Danijela V.
Pavlović, Vladimir B.
Pavlović, Vera P.
Obradović, Nina
Mitrić, Miodrag
Stevanović, Sanja
Vlahović, Branislav
Uskoković, Petar S.
Marinković, Aleksandar D.
Article (Published version)
Metadata
Show full item record
Abstract
The structural characteristics of polymer nanocomposites with functionalized multiwall carbon nanotubes (MWCNTs) in poly(methyl methacrylate) matrix have been studied in relation to nanofiller loading and surface functionality. Different functional groups have been covalently attached on the MWCNTs sidewalls in order to induce interfacial interactions at nanofiller/polymer interface, which resulted in an improved nanomechanical features. Structural properties of nanocomposites, studied with XRD and Raman analysis, indicated the most pronounced decrease in a degree of amorphousness for samples containing 0.5 and 1 wt% of MWCNTs functionalized with dapsone (dapson-MWCNT) and diethyl malonate (dem-MWCNT). SEM and TEM micrographs confirmed improved dispersibility of the MWCNTs modified with aromatic structure of dapsone inside PMMA matrix. A significant increase in a glass transition temperature of over 60°C has been found for the 1 wt% dapson-MWCNT nanocomposite. Additional modification o...f dapson-MWCNT by further increasing aromaticity and voluminosity of attached moiety (fid-MWCNT), showed 30°C increases in a glass transition temperature at 4 wt% of nanofiller loading, which is similar to shift of 37°C with loading of MWCNTs modified with ester terminal group. A maximum increase of 56% of reduced modulus and 86% of hardness was obtained for 1 wt% loading of dapson-MWCNT nanofiller.

Keywords:
polymer nanocomposites / functionalized multiwall carbon nanotubes / poly(methyl methacrylate) matrix / XRD / Raman analysis
Source:
Polymer Composites, 2017, 38, S1, E472-E489
Publisher:
  • Hoboken, NJ : John Wiley & Sons
Funding / projects:
  • Synthesis, processing and applications of nanostructured multifunctional materials with defined properties (RS-45019)
  • Directed synthesis, structure and properties of multifunctional materials (RS-172057)
  • United States National Science Foundation (NSF) / Centers of Research Excellence in Science and Technology (CREST), Grant HRD-0833184
  • United States National Aeronautics and Space Administration (NASA), Grant NNX09AV07A

DOI: 10.1002/pc.23996

ISSN: 0272-8397

WoS: 000411830400053

Scopus: 2-s2.0-84961282389
[ Google Scholar ]
9
6
Handle
https://hdl.handle.net/21.15107/rcub_dais_16014
URI
https://dais.sanu.ac.rs/123456789/16014
Collections
  • ИТН САНУ - Општа колекција / ITS SASA - General collection
Institution/Community
Институт техничких наука САНУ / Institute of Technical Sciences of SASA
TY  - JOUR
AU  - Brković, Danijela V.
AU  - Pavlović, Vladimir B.
AU  - Pavlović, Vera P.
AU  - Obradović, Nina
AU  - Mitrić, Miodrag
AU  - Stevanović, Sanja
AU  - Vlahović, Branislav
AU  - Uskoković, Petar S.
AU  - Marinković, Aleksandar D.
PY  - 2017
UR  - https://dais.sanu.ac.rs/123456789/16014
AB  - The structural characteristics of polymer nanocomposites with functionalized multiwall carbon nanotubes (MWCNTs) in poly(methyl methacrylate) matrix have been studied in relation to nanofiller loading and surface functionality. Different functional groups have been covalently attached on the MWCNTs sidewalls in order to induce interfacial interactions at nanofiller/polymer interface, which resulted in an improved nanomechanical features. Structural properties of nanocomposites, studied with XRD and Raman analysis, indicated the most pronounced decrease in a degree of amorphousness for samples containing 0.5 and 1 wt% of MWCNTs functionalized with dapsone (dapson-MWCNT) and diethyl malonate (dem-MWCNT). SEM and TEM micrographs confirmed improved dispersibility of the MWCNTs modified with aromatic structure of dapsone inside PMMA matrix. A significant increase in a glass transition temperature of over 60°C has been found for the 1 wt% dapson-MWCNT nanocomposite. Additional modification of dapson-MWCNT by further increasing aromaticity and voluminosity of attached moiety (fid-MWCNT), showed 30°C increases in a glass transition temperature at 4 wt% of nanofiller loading, which is similar to shift of 37°C with loading of MWCNTs modified with ester terminal group. A maximum increase of 56% of reduced modulus and 86% of hardness was obtained for 1 wt% loading of dapson-MWCNT nanofiller.
PB  - Hoboken, NJ : John Wiley & Sons
T2  - Polymer Composites
T1  - Structural properties of the multiwall carbon nanotubes/poly(methyl methacrylate) nanocomposites: effect of the multiwall carbon nanotubes covalent functionalization
SP  - E472
EP  - E489
VL  - 38
IS  - S1
DO  - 10.1002/pc.23996
UR  - https://hdl.handle.net/21.15107/rcub_dais_16014
ER  - 
@article{
author = "Brković, Danijela V. and Pavlović, Vladimir B. and Pavlović, Vera P. and Obradović, Nina and Mitrić, Miodrag and Stevanović, Sanja and Vlahović, Branislav and Uskoković, Petar S. and Marinković, Aleksandar D.",
year = "2017",
abstract = "The structural characteristics of polymer nanocomposites with functionalized multiwall carbon nanotubes (MWCNTs) in poly(methyl methacrylate) matrix have been studied in relation to nanofiller loading and surface functionality. Different functional groups have been covalently attached on the MWCNTs sidewalls in order to induce interfacial interactions at nanofiller/polymer interface, which resulted in an improved nanomechanical features. Structural properties of nanocomposites, studied with XRD and Raman analysis, indicated the most pronounced decrease in a degree of amorphousness for samples containing 0.5 and 1 wt% of MWCNTs functionalized with dapsone (dapson-MWCNT) and diethyl malonate (dem-MWCNT). SEM and TEM micrographs confirmed improved dispersibility of the MWCNTs modified with aromatic structure of dapsone inside PMMA matrix. A significant increase in a glass transition temperature of over 60°C has been found for the 1 wt% dapson-MWCNT nanocomposite. Additional modification of dapson-MWCNT by further increasing aromaticity and voluminosity of attached moiety (fid-MWCNT), showed 30°C increases in a glass transition temperature at 4 wt% of nanofiller loading, which is similar to shift of 37°C with loading of MWCNTs modified with ester terminal group. A maximum increase of 56% of reduced modulus and 86% of hardness was obtained for 1 wt% loading of dapson-MWCNT nanofiller.",
publisher = "Hoboken, NJ : John Wiley & Sons",
journal = "Polymer Composites",
title = "Structural properties of the multiwall carbon nanotubes/poly(methyl methacrylate) nanocomposites: effect of the multiwall carbon nanotubes covalent functionalization",
pages = "E472-E489",
volume = "38",
number = "S1",
doi = "10.1002/pc.23996",
url = "https://hdl.handle.net/21.15107/rcub_dais_16014"
}
Brković, D. V., Pavlović, V. B., Pavlović, V. P., Obradović, N., Mitrić, M., Stevanović, S., Vlahović, B., Uskoković, P. S.,& Marinković, A. D.. (2017). Structural properties of the multiwall carbon nanotubes/poly(methyl methacrylate) nanocomposites: effect of the multiwall carbon nanotubes covalent functionalization. in Polymer Composites
Hoboken, NJ : John Wiley & Sons., 38(S1), E472-E489.
https://doi.org/10.1002/pc.23996
https://hdl.handle.net/21.15107/rcub_dais_16014
Brković DV, Pavlović VB, Pavlović VP, Obradović N, Mitrić M, Stevanović S, Vlahović B, Uskoković PS, Marinković AD. Structural properties of the multiwall carbon nanotubes/poly(methyl methacrylate) nanocomposites: effect of the multiwall carbon nanotubes covalent functionalization. in Polymer Composites. 2017;38(S1):E472-E489.
doi:10.1002/pc.23996
https://hdl.handle.net/21.15107/rcub_dais_16014 .
Brković, Danijela V., Pavlović, Vladimir B., Pavlović, Vera P., Obradović, Nina, Mitrić, Miodrag, Stevanović, Sanja, Vlahović, Branislav, Uskoković, Petar S., Marinković, Aleksandar D., "Structural properties of the multiwall carbon nanotubes/poly(methyl methacrylate) nanocomposites: effect of the multiwall carbon nanotubes covalent functionalization" in Polymer Composites, 38, no. S1 (2017):E472-E489,
https://doi.org/10.1002/pc.23996 .,
https://hdl.handle.net/21.15107/rcub_dais_16014 .

DSpace software copyright © 2002-2015  DuraSpace
About DAIS - Digital Archive of the Serbian Academy of Sciences and Arts | Send Feedback

CoreTrustSealre3dataOpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About DAIS - Digital Archive of the Serbian Academy of Sciences and Arts | Send Feedback

CoreTrustSealre3dataOpenAIRERCUB