DAIS - Digital Archive of the Serbian Academy of Sciences and Arts
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   DAIS
  • Институт техничких наука САНУ / Institute of Technical Sciences of SASA
  • ИТН САНУ - Општа колекција / ITS SASA - General collection
  • View Item
  •   DAIS
  • Институт техничких наука САНУ / Institute of Technical Sciences of SASA
  • ИТН САНУ - Општа колекција / ITS SASA - General collection
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Structural and electronic properties of screen-printed Fe2O3/TiO2 thick films and their photoelectrochemical behavior

Authorized Users Only
2017
Authors
Aleksić, Obrad S.
Vasiljević, Zorka Ž.
Vujković, Milica
Nikolić, Marko G.
Labus, Nebojša
Luković, Miloljub D.
Nikolić, Maria Vesna
Article (Published version)
Metadata
Show full item record
Abstract
Nanostructured Fe2TiO5 thick films were deposited on fluorine-doped tin oxide glass substrate using screen printing technology. Starting hematite and anatase nanopowders were mixed in molar ratios 1:1 and 1:1.5 and calcined in air at 900°C for 2 h to form pseudobrookite, Fe2TiO5. Functional powders and sintered thick films were analyzed by X-ray diffraction, scanning electron microscopy, energy-dispersive spectroscopy and transmission electron microscopy. UV–Vis analysis enabled determination of the band gap. Separation and transfer efficiency of photogenerated charge carriers was confirmed by the photoluminescence and electrochemical impedance spectra. Even though a slightly high onset oxygen evolution potential of photoexcited film electrode samples in NaOH was obtained, photocurrent densities were high, especially in the presence of H2O2 (~12 mA cm−2 at 1.7 V RHE). This work shows promise for practical application due to favorable band positions of pseudobrookite and low-cost screen... printing technology.

Keywords:
nanostructured Fe2TiO5 / hematite and anatase nanopowders / pseudobrookite / photoexcited film electrode / separation and transfer efficiency
Source:
Journal of Materials Science, 2017, 52, 10, 5938-5953
Publisher:
  • Springer US
Funding / projects:
  • Zero- to Three-Dimensional Nanostructures for Application in Electronics and Renewable Energy Sources: Synthesis, Characterization and Processing (RS-45007)
  • Lithium-ion batteries and fuel cells - research and development (RS-45014)

DOI: 10.1007/s10853-017-0830-2

ISSN: 0022-2461 (Print); 1573-4803 (Online)

WoS: 000395206400044

Scopus: 2-s2.0-85011292075
[ Google Scholar ]
5
5
Handle
https://hdl.handle.net/21.15107/rcub_dais_16011
URI
https://dais.sanu.ac.rs/123456789/16011
Collections
  • ИТН САНУ - Општа колекција / ITS SASA - General collection
Institution/Community
Институт техничких наука САНУ / Institute of Technical Sciences of SASA
TY  - JOUR
AU  - Aleksić, Obrad S.
AU  - Vasiljević, Zorka Ž.
AU  - Vujković, Milica
AU  - Nikolić, Marko G.
AU  - Labus, Nebojša
AU  - Luković, Miloljub D.
AU  - Nikolić, Maria Vesna
PY  - 2017
UR  - https://dais.sanu.ac.rs/123456789/16011
AB  - Nanostructured Fe2TiO5 thick films were deposited on fluorine-doped tin oxide glass substrate using screen printing technology. Starting hematite and anatase nanopowders were mixed in molar ratios 1:1 and 1:1.5 and calcined in air at 900°C for 2 h to form pseudobrookite, Fe2TiO5. Functional powders and sintered thick films were analyzed by X-ray diffraction, scanning electron microscopy, energy-dispersive spectroscopy and transmission electron microscopy. UV–Vis analysis enabled determination of the band gap. Separation and transfer efficiency of photogenerated charge carriers was confirmed by the photoluminescence and electrochemical impedance spectra. Even though a slightly high onset oxygen evolution potential of photoexcited film electrode samples in NaOH was obtained, photocurrent densities were high, especially in the presence of H2O2 (~12 mA cm−2 at 1.7 V RHE). This work shows promise for practical application due to favorable band positions of pseudobrookite and low-cost screen printing technology.
PB  - Springer US
T2  - Journal of Materials Science
T1  - Structural and electronic properties of screen-printed Fe2O3/TiO2 thick films and their photoelectrochemical behavior
SP  - 5938
EP  - 5953
VL  - 52
IS  - 10
DO  - 10.1007/s10853-017-0830-2
UR  - https://hdl.handle.net/21.15107/rcub_dais_16011
ER  - 
@article{
author = "Aleksić, Obrad S. and Vasiljević, Zorka Ž. and Vujković, Milica and Nikolić, Marko G. and Labus, Nebojša and Luković, Miloljub D. and Nikolić, Maria Vesna",
year = "2017",
abstract = "Nanostructured Fe2TiO5 thick films were deposited on fluorine-doped tin oxide glass substrate using screen printing technology. Starting hematite and anatase nanopowders were mixed in molar ratios 1:1 and 1:1.5 and calcined in air at 900°C for 2 h to form pseudobrookite, Fe2TiO5. Functional powders and sintered thick films were analyzed by X-ray diffraction, scanning electron microscopy, energy-dispersive spectroscopy and transmission electron microscopy. UV–Vis analysis enabled determination of the band gap. Separation and transfer efficiency of photogenerated charge carriers was confirmed by the photoluminescence and electrochemical impedance spectra. Even though a slightly high onset oxygen evolution potential of photoexcited film electrode samples in NaOH was obtained, photocurrent densities were high, especially in the presence of H2O2 (~12 mA cm−2 at 1.7 V RHE). This work shows promise for practical application due to favorable band positions of pseudobrookite and low-cost screen printing technology.",
publisher = "Springer US",
journal = "Journal of Materials Science",
title = "Structural and electronic properties of screen-printed Fe2O3/TiO2 thick films and their photoelectrochemical behavior",
pages = "5938-5953",
volume = "52",
number = "10",
doi = "10.1007/s10853-017-0830-2",
url = "https://hdl.handle.net/21.15107/rcub_dais_16011"
}
Aleksić, O. S., Vasiljević, Z. Ž., Vujković, M., Nikolić, M. G., Labus, N., Luković, M. D.,& Nikolić, M. V.. (2017). Structural and electronic properties of screen-printed Fe2O3/TiO2 thick films and their photoelectrochemical behavior. in Journal of Materials Science
Springer US., 52(10), 5938-5953.
https://doi.org/10.1007/s10853-017-0830-2
https://hdl.handle.net/21.15107/rcub_dais_16011
Aleksić OS, Vasiljević ZŽ, Vujković M, Nikolić MG, Labus N, Luković MD, Nikolić MV. Structural and electronic properties of screen-printed Fe2O3/TiO2 thick films and their photoelectrochemical behavior. in Journal of Materials Science. 2017;52(10):5938-5953.
doi:10.1007/s10853-017-0830-2
https://hdl.handle.net/21.15107/rcub_dais_16011 .
Aleksić, Obrad S., Vasiljević, Zorka Ž., Vujković, Milica, Nikolić, Marko G., Labus, Nebojša, Luković, Miloljub D., Nikolić, Maria Vesna, "Structural and electronic properties of screen-printed Fe2O3/TiO2 thick films and their photoelectrochemical behavior" in Journal of Materials Science, 52, no. 10 (2017):5938-5953,
https://doi.org/10.1007/s10853-017-0830-2 .,
https://hdl.handle.net/21.15107/rcub_dais_16011 .

DSpace software copyright © 2002-2015  DuraSpace
About DAIS - Digital Archive of the Serbian Academy of Sciences and Arts | Send Feedback

CoreTrustSealre3dataOpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About DAIS - Digital Archive of the Serbian Academy of Sciences and Arts | Send Feedback

CoreTrustSealre3dataOpenAIRERCUB