Dielectric characteristics of donor-acceptor modified BaTiO3 ceramics
Abstract
Sm/Mn codoped BaTiO3 ceramics were investigated for their microstructure and dielectric characteristics. The powders were prepared by the conventional solid state procedure. The concentration of Sm2O3 as a donor dopant has been kept from 0.1 up to 5.0 at%. The content of MnO2 as acceptor was kept constant at 0.05 at% Mn in all samples. The specimens were sintered at 1290 °C, 1320 °C and 1350 °C in an air atmosphere for two hours.
A mainly uniform and homogeneous microstructure with average grain size ranging from 0.3 µm to 2.0 µm was observed in low doped samples. In highly doped samples, apart from the fine grained matrix, the appearance of local area with secondary abnormal grains was observed.
The dielectric properties were investigated as a function of frequency and temperature. The low doped samples exhibit the high value of dielectric permittivity at room temperature and the greatest change at the Curie temperature. The highest value of dielectric constant (εr=6800) was mea...sured for 0.1Sm/BaTiO3 samples sintered at 1350 °C. A nearly flat permittivity-temperature response and lower values of εr were obtained in specimens with 2.0 and 5.0 at% additive content. The dielectric constant increases with the increase of sintering temperature. The dissipation factor ranged from 0.01 to 0.22 and decreases with the increase of sintering temperature. The Curie constant (C), Curie-Weiss temperature (T0) and critical exponent of nonlinearity (γ ) were calculated using a Curie-Weiss and modified Curie-Weiss law. The highest value of Curie constant (C=9.06·105 K) was measured in 0.1 at% doped samples. The Curie constant decreased with increasing dopant content. The γ values, ranging from 1.001 to 1.58, point out the sharp phase transition in low doped samples, and the diffuse phase transition in heavily doped BaTiO3 samples.
Keywords:
Sintering / Microstructure / dielectric properties / Barium titanateSource:
Ceramics International, 2016, 42, 10, 11692-11699Publisher:
- Elsevier
Funding / projects:
DOI: 10.1016/j.ceramint.2016.04.087
ISSN: 0272-8842
WoS: 000377733500025
Scopus: 2-s2.0-84992307430
Institution/Community
Институт техничких наука САНУ / Institute of Technical Sciences of SASATY - JOUR AU - Paunović, Vesna AU - Mitić, Vojislav V. AU - Kocić, Ljubiša PY - 2016 UR - https://dais.sanu.ac.rs/123456789/15998 AB - Sm/Mn codoped BaTiO3 ceramics were investigated for their microstructure and dielectric characteristics. The powders were prepared by the conventional solid state procedure. The concentration of Sm2O3 as a donor dopant has been kept from 0.1 up to 5.0 at%. The content of MnO2 as acceptor was kept constant at 0.05 at% Mn in all samples. The specimens were sintered at 1290 °C, 1320 °C and 1350 °C in an air atmosphere for two hours. A mainly uniform and homogeneous microstructure with average grain size ranging from 0.3 µm to 2.0 µm was observed in low doped samples. In highly doped samples, apart from the fine grained matrix, the appearance of local area with secondary abnormal grains was observed. The dielectric properties were investigated as a function of frequency and temperature. The low doped samples exhibit the high value of dielectric permittivity at room temperature and the greatest change at the Curie temperature. The highest value of dielectric constant (εr=6800) was measured for 0.1Sm/BaTiO3 samples sintered at 1350 °C. A nearly flat permittivity-temperature response and lower values of εr were obtained in specimens with 2.0 and 5.0 at% additive content. The dielectric constant increases with the increase of sintering temperature. The dissipation factor ranged from 0.01 to 0.22 and decreases with the increase of sintering temperature. The Curie constant (C), Curie-Weiss temperature (T0) and critical exponent of nonlinearity (γ ) were calculated using a Curie-Weiss and modified Curie-Weiss law. The highest value of Curie constant (C=9.06·105 K) was measured in 0.1 at% doped samples. The Curie constant decreased with increasing dopant content. The γ values, ranging from 1.001 to 1.58, point out the sharp phase transition in low doped samples, and the diffuse phase transition in heavily doped BaTiO3 samples. PB - Elsevier T2 - Ceramics International T1 - Dielectric characteristics of donor-acceptor modified BaTiO3 ceramics SP - 11692 EP - 11699 VL - 42 IS - 10 DO - 10.1016/j.ceramint.2016.04.087 UR - https://hdl.handle.net/21.15107/rcub_dais_15998 ER -
@article{ author = "Paunović, Vesna and Mitić, Vojislav V. and Kocić, Ljubiša", year = "2016", abstract = "Sm/Mn codoped BaTiO3 ceramics were investigated for their microstructure and dielectric characteristics. The powders were prepared by the conventional solid state procedure. The concentration of Sm2O3 as a donor dopant has been kept from 0.1 up to 5.0 at%. The content of MnO2 as acceptor was kept constant at 0.05 at% Mn in all samples. The specimens were sintered at 1290 °C, 1320 °C and 1350 °C in an air atmosphere for two hours. A mainly uniform and homogeneous microstructure with average grain size ranging from 0.3 µm to 2.0 µm was observed in low doped samples. In highly doped samples, apart from the fine grained matrix, the appearance of local area with secondary abnormal grains was observed. The dielectric properties were investigated as a function of frequency and temperature. The low doped samples exhibit the high value of dielectric permittivity at room temperature and the greatest change at the Curie temperature. The highest value of dielectric constant (εr=6800) was measured for 0.1Sm/BaTiO3 samples sintered at 1350 °C. A nearly flat permittivity-temperature response and lower values of εr were obtained in specimens with 2.0 and 5.0 at% additive content. The dielectric constant increases with the increase of sintering temperature. The dissipation factor ranged from 0.01 to 0.22 and decreases with the increase of sintering temperature. The Curie constant (C), Curie-Weiss temperature (T0) and critical exponent of nonlinearity (γ ) were calculated using a Curie-Weiss and modified Curie-Weiss law. The highest value of Curie constant (C=9.06·105 K) was measured in 0.1 at% doped samples. The Curie constant decreased with increasing dopant content. The γ values, ranging from 1.001 to 1.58, point out the sharp phase transition in low doped samples, and the diffuse phase transition in heavily doped BaTiO3 samples.", publisher = "Elsevier", journal = "Ceramics International", title = "Dielectric characteristics of donor-acceptor modified BaTiO3 ceramics", pages = "11692-11699", volume = "42", number = "10", doi = "10.1016/j.ceramint.2016.04.087", url = "https://hdl.handle.net/21.15107/rcub_dais_15998" }
Paunović, V., Mitić, V. V.,& Kocić, L.. (2016). Dielectric characteristics of donor-acceptor modified BaTiO3 ceramics. in Ceramics International Elsevier., 42(10), 11692-11699. https://doi.org/10.1016/j.ceramint.2016.04.087 https://hdl.handle.net/21.15107/rcub_dais_15998
Paunović V, Mitić VV, Kocić L. Dielectric characteristics of donor-acceptor modified BaTiO3 ceramics. in Ceramics International. 2016;42(10):11692-11699. doi:10.1016/j.ceramint.2016.04.087 https://hdl.handle.net/21.15107/rcub_dais_15998 .
Paunović, Vesna, Mitić, Vojislav V., Kocić, Ljubiša, "Dielectric characteristics of donor-acceptor modified BaTiO3 ceramics" in Ceramics International, 42, no. 10 (2016):11692-11699, https://doi.org/10.1016/j.ceramint.2016.04.087 ., https://hdl.handle.net/21.15107/rcub_dais_15998 .