Dielectric properties, complex impedance and electrical conductivity of Fe2TiO5 nanopowder compacts and bulk samples at elevated temperatures
Authorized Users Only
2017
Authors
Nikolić, Maria Vesna
Sekulić, D. L.
Vasiljević, Zorka Ž.

Luković, Miloljub D.

Pavlović, Vladimir B.

Aleksić, Obrad S.
Article (Published version)

Metadata
Show full item recordAbstract
In this work we have investigated changes in dielectric properties, electrical conductivity and complex impedance of Fe2TiO5 nanopowder compacts and bulk samples as a function of elevated temperature (room to 423 K compacts, to 443 K bulk samples), frequency (100 Hz–1 MHz) and composition (starting molar ratio of Fe2O3 and TiO2 1:1—PSB11 and 1:1.5—PSB115). XRD, SEM and TEM analysis of PSB11 and PSB115 powders obtained by a simple solid state process from starting hematite and anatase nanopowders confirmed the formation of nanostructured orthorhombic pseudobrookite with small amounts of excess hematite and rutile. The dielectric constant decreased with frequency and temperature for both compacts and bulk samples. Higher values were determined for bulk samples also reflecting the influence of sample composition. Change in the dielectric loss also reflected the influence of sample composition showing one maximum at high frequencies for compacts, and two maxima at room temperature for bulk... samples. Complex impedance was analyzed using equivalent circuits and showed in the case of compacts the influence of both grain and grain boundary components, while in the case of bulk samples the dominant influence of grain boundaries. The temperature dependence of the determined grain and grain boundary resistance for compacts and grain boundary resistance for bulk samples was analyzed using the adiabatic small polaron hopping model enabling determination of activation energies for conduction, while the temperature dependence of relaxation times enabled determination of activation energies for relaxation. Changes in electrical conductivity for compacts and bulk samples followed Jonscher’s power law. The change of the determined frequency constant with temperature showed that at elevated temperatures the quantum mechanical-tunneling model for the case of small polaron hopping explains the conduction mechanism occurring in both compacts and bulk samples.
Keywords:
dielectric properties / Fe2TiO5 / nanopowder / elevated temperaturesSource:
Journal of Materials Science: Materials in Electronics, 2017, 28, 6, 4796-4806Publisher:
- Springer US
Funding / projects:
- Zero- to Three-Dimensional Nanostructures for Application in Electronics and Renewable Energy Sources: Synthesis, Characterization and Processing (RS-45007)
- Lithium-ion batteries and fuel cells - research and development (RS-45014)
DOI: 10.1007/s10854-016-6125-6
ISSN: 0957-4522
WoS: 000395072700037
Scopus: 2-s2.0-84997221466
Institution/Community
Институт техничких наука САНУ / Institute of Technical Sciences of SASATY - JOUR AU - Nikolić, Maria Vesna AU - Sekulić, D. L. AU - Vasiljević, Zorka Ž. AU - Luković, Miloljub D. AU - Pavlović, Vladimir B. AU - Aleksić, Obrad S. PY - 2017 UR - https://dais.sanu.ac.rs/123456789/15993 AB - In this work we have investigated changes in dielectric properties, electrical conductivity and complex impedance of Fe2TiO5 nanopowder compacts and bulk samples as a function of elevated temperature (room to 423 K compacts, to 443 K bulk samples), frequency (100 Hz–1 MHz) and composition (starting molar ratio of Fe2O3 and TiO2 1:1—PSB11 and 1:1.5—PSB115). XRD, SEM and TEM analysis of PSB11 and PSB115 powders obtained by a simple solid state process from starting hematite and anatase nanopowders confirmed the formation of nanostructured orthorhombic pseudobrookite with small amounts of excess hematite and rutile. The dielectric constant decreased with frequency and temperature for both compacts and bulk samples. Higher values were determined for bulk samples also reflecting the influence of sample composition. Change in the dielectric loss also reflected the influence of sample composition showing one maximum at high frequencies for compacts, and two maxima at room temperature for bulk samples. Complex impedance was analyzed using equivalent circuits and showed in the case of compacts the influence of both grain and grain boundary components, while in the case of bulk samples the dominant influence of grain boundaries. The temperature dependence of the determined grain and grain boundary resistance for compacts and grain boundary resistance for bulk samples was analyzed using the adiabatic small polaron hopping model enabling determination of activation energies for conduction, while the temperature dependence of relaxation times enabled determination of activation energies for relaxation. Changes in electrical conductivity for compacts and bulk samples followed Jonscher’s power law. The change of the determined frequency constant with temperature showed that at elevated temperatures the quantum mechanical-tunneling model for the case of small polaron hopping explains the conduction mechanism occurring in both compacts and bulk samples. PB - Springer US T2 - Journal of Materials Science: Materials in Electronics T1 - Dielectric properties, complex impedance and electrical conductivity of Fe2TiO5 nanopowder compacts and bulk samples at elevated temperatures SP - 4796 EP - 4806 VL - 28 IS - 6 DO - 10.1007/s10854-016-6125-6 UR - https://hdl.handle.net/21.15107/rcub_dais_15993 ER -
@article{ author = "Nikolić, Maria Vesna and Sekulić, D. L. and Vasiljević, Zorka Ž. and Luković, Miloljub D. and Pavlović, Vladimir B. and Aleksić, Obrad S.", year = "2017", abstract = "In this work we have investigated changes in dielectric properties, electrical conductivity and complex impedance of Fe2TiO5 nanopowder compacts and bulk samples as a function of elevated temperature (room to 423 K compacts, to 443 K bulk samples), frequency (100 Hz–1 MHz) and composition (starting molar ratio of Fe2O3 and TiO2 1:1—PSB11 and 1:1.5—PSB115). XRD, SEM and TEM analysis of PSB11 and PSB115 powders obtained by a simple solid state process from starting hematite and anatase nanopowders confirmed the formation of nanostructured orthorhombic pseudobrookite with small amounts of excess hematite and rutile. The dielectric constant decreased with frequency and temperature for both compacts and bulk samples. Higher values were determined for bulk samples also reflecting the influence of sample composition. Change in the dielectric loss also reflected the influence of sample composition showing one maximum at high frequencies for compacts, and two maxima at room temperature for bulk samples. Complex impedance was analyzed using equivalent circuits and showed in the case of compacts the influence of both grain and grain boundary components, while in the case of bulk samples the dominant influence of grain boundaries. The temperature dependence of the determined grain and grain boundary resistance for compacts and grain boundary resistance for bulk samples was analyzed using the adiabatic small polaron hopping model enabling determination of activation energies for conduction, while the temperature dependence of relaxation times enabled determination of activation energies for relaxation. Changes in electrical conductivity for compacts and bulk samples followed Jonscher’s power law. The change of the determined frequency constant with temperature showed that at elevated temperatures the quantum mechanical-tunneling model for the case of small polaron hopping explains the conduction mechanism occurring in both compacts and bulk samples.", publisher = "Springer US", journal = "Journal of Materials Science: Materials in Electronics", title = "Dielectric properties, complex impedance and electrical conductivity of Fe2TiO5 nanopowder compacts and bulk samples at elevated temperatures", pages = "4796-4806", volume = "28", number = "6", doi = "10.1007/s10854-016-6125-6", url = "https://hdl.handle.net/21.15107/rcub_dais_15993" }
Nikolić, M. V., Sekulić, D. L., Vasiljević, Z. Ž., Luković, M. D., Pavlović, V. B.,& Aleksić, O. S.. (2017). Dielectric properties, complex impedance and electrical conductivity of Fe2TiO5 nanopowder compacts and bulk samples at elevated temperatures. in Journal of Materials Science: Materials in Electronics Springer US., 28(6), 4796-4806. https://doi.org/10.1007/s10854-016-6125-6 https://hdl.handle.net/21.15107/rcub_dais_15993
Nikolić MV, Sekulić DL, Vasiljević ZŽ, Luković MD, Pavlović VB, Aleksić OS. Dielectric properties, complex impedance and electrical conductivity of Fe2TiO5 nanopowder compacts and bulk samples at elevated temperatures. in Journal of Materials Science: Materials in Electronics. 2017;28(6):4796-4806. doi:10.1007/s10854-016-6125-6 https://hdl.handle.net/21.15107/rcub_dais_15993 .
Nikolić, Maria Vesna, Sekulić, D. L., Vasiljević, Zorka Ž., Luković, Miloljub D., Pavlović, Vladimir B., Aleksić, Obrad S., "Dielectric properties, complex impedance and electrical conductivity of Fe2TiO5 nanopowder compacts and bulk samples at elevated temperatures" in Journal of Materials Science: Materials in Electronics, 28, no. 6 (2017):4796-4806, https://doi.org/10.1007/s10854-016-6125-6 ., https://hdl.handle.net/21.15107/rcub_dais_15993 .