DAIS - Digital Archive of the Serbian Academy of Sciences and Arts
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   DAIS
  • Институт техничких наука САНУ / Institute of Technical Sciences of SASA
  • ИТН САНУ - Општа колекција / ITS SASA - General collection
  • View Item
  •   DAIS
  • Институт техничких наука САНУ / Institute of Technical Sciences of SASA
  • ИТН САНУ - Општа колекција / ITS SASA - General collection
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Modification of mechanical and thermal properties of fly ash-based geopolymer by the incorporation of steel slag

Authorized Users Only
2016
Authors
Nikolić, Irena
Marković, Smilja
Janković Častvan, Ivona
Radmilović, Vuk V.
Karanović, Ljiljana
Babić, Biljana M.
Radmilović, Velimir R.
Article (Published version)
Metadata
Show full item record
Abstract
Geopolymeric binders (GB) were produced using fly ash (FA) and electric arc furnace slag (EAFS). The slag has been added in the range of 0–40%. The effects of slag content on the strength, microstructure and thermal resistance were evaluated. It was found that the amount of EAFS up to 30% positively affects the strength evolution of GB. The main reaction product of FA/EAFS blends was amorphous N–(C)–A–S–H gel along with geopolymer-type gel (N–A–S–H). Thermal resistance of GB was considered from the standpoint of their mechanical and dimensional stability after heating in the temperature interval of 600–800 °C. The changes in mechanical and thermal properties of GB after heating are attributed to the changes in their structure. The results have shown that EAFS negatively affects the thermal resistance of GB above 600 °C due to the phase transition and morphological transformation of the amorphous gel phase.
Keywords:
Geopolymers / Porous materials / Thermal properties / Steel slag / Fly ash
Source:
Materials Letters, 2016, 176, 301-305
Publisher:
  • Elsevier
Funding / projects:
  • Zero- to Three-Dimensional Nanostructures for Application in Electronics and Renewable Energy Sources: Synthesis, Characterization and Processing (RS-45007)
  • Synthesis, processing and applications of nanostructured multifunctional materials with defined properties (RS-45019)
  • Development, characterization and application nanostructured and composite electrocatalysts and interactive supports for fuel cells and water electrolysis (RS-172054)
  • Serbian Academy of Sciences and Arts, Project F-141
  • Ministry of Science of Montenegro, Project no. 01-460

DOI: 10.1016/j.matlet.2016.04.121

ISSN: 0167-577X

WoS: 000375852800075

Scopus: 2-s2.0-84964680209
[ Google Scholar ]
47
26
Handle
https://hdl.handle.net/21.15107/rcub_dais_15992
URI
https://dais.sanu.ac.rs/123456789/15992
Collections
  • ИТН САНУ - Општа колекција / ITS SASA - General collection
Institution/Community
Институт техничких наука САНУ / Institute of Technical Sciences of SASA
TY  - JOUR
AU  - Nikolić, Irena
AU  - Marković, Smilja
AU  - Janković Častvan, Ivona
AU  - Radmilović, Vuk V.
AU  - Karanović, Ljiljana
AU  - Babić, Biljana M.
AU  - Radmilović, Velimir R.
PY  - 2016
UR  - https://dais.sanu.ac.rs/123456789/15992
AB  - Geopolymeric binders (GB) were produced using fly ash (FA) and electric arc furnace slag (EAFS). The slag has been added in the range of 0–40%. The effects of slag content on the strength, microstructure and thermal resistance were evaluated. It was found that the amount of EAFS up to 30% positively affects the strength evolution of GB. The main reaction product of FA/EAFS blends was amorphous N–(C)–A–S–H gel along with geopolymer-type gel (N–A–S–H). Thermal resistance of GB was considered from the standpoint of their mechanical and dimensional stability after heating in the temperature interval of 600–800 °C. The changes in mechanical and thermal properties of GB after heating are attributed to the changes in their structure. The results have shown that EAFS negatively affects the thermal resistance of GB above 600 °C due to the phase transition and morphological transformation of the amorphous gel phase.
PB  - Elsevier
T2  - Materials Letters
T1  - Modification of mechanical and thermal properties of fly ash-based geopolymer by the incorporation of steel slag
SP  - 301
EP  - 305
VL  - 176
DO  - 10.1016/j.matlet.2016.04.121
UR  - https://hdl.handle.net/21.15107/rcub_dais_15992
ER  - 
@article{
author = "Nikolić, Irena and Marković, Smilja and Janković Častvan, Ivona and Radmilović, Vuk V. and Karanović, Ljiljana and Babić, Biljana M. and Radmilović, Velimir R.",
year = "2016",
abstract = "Geopolymeric binders (GB) were produced using fly ash (FA) and electric arc furnace slag (EAFS). The slag has been added in the range of 0–40%. The effects of slag content on the strength, microstructure and thermal resistance were evaluated. It was found that the amount of EAFS up to 30% positively affects the strength evolution of GB. The main reaction product of FA/EAFS blends was amorphous N–(C)–A–S–H gel along with geopolymer-type gel (N–A–S–H). Thermal resistance of GB was considered from the standpoint of their mechanical and dimensional stability after heating in the temperature interval of 600–800 °C. The changes in mechanical and thermal properties of GB after heating are attributed to the changes in their structure. The results have shown that EAFS negatively affects the thermal resistance of GB above 600 °C due to the phase transition and morphological transformation of the amorphous gel phase.",
publisher = "Elsevier",
journal = "Materials Letters",
title = "Modification of mechanical and thermal properties of fly ash-based geopolymer by the incorporation of steel slag",
pages = "301-305",
volume = "176",
doi = "10.1016/j.matlet.2016.04.121",
url = "https://hdl.handle.net/21.15107/rcub_dais_15992"
}
Nikolić, I., Marković, S., Janković Častvan, I., Radmilović, V. V., Karanović, L., Babić, B. M.,& Radmilović, V. R.. (2016). Modification of mechanical and thermal properties of fly ash-based geopolymer by the incorporation of steel slag. in Materials Letters
Elsevier., 176, 301-305.
https://doi.org/10.1016/j.matlet.2016.04.121
https://hdl.handle.net/21.15107/rcub_dais_15992
Nikolić I, Marković S, Janković Častvan I, Radmilović VV, Karanović L, Babić BM, Radmilović VR. Modification of mechanical and thermal properties of fly ash-based geopolymer by the incorporation of steel slag. in Materials Letters. 2016;176:301-305.
doi:10.1016/j.matlet.2016.04.121
https://hdl.handle.net/21.15107/rcub_dais_15992 .
Nikolić, Irena, Marković, Smilja, Janković Častvan, Ivona, Radmilović, Vuk V., Karanović, Ljiljana, Babić, Biljana M., Radmilović, Velimir R., "Modification of mechanical and thermal properties of fly ash-based geopolymer by the incorporation of steel slag" in Materials Letters, 176 (2016):301-305,
https://doi.org/10.1016/j.matlet.2016.04.121 .,
https://hdl.handle.net/21.15107/rcub_dais_15992 .

DSpace software copyright © 2002-2015  DuraSpace
About DAIS - Digital Archive of the Serbian Academy of Sciences and Arts | Send Feedback

CoreTrustSealre3dataOpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About DAIS - Digital Archive of the Serbian Academy of Sciences and Arts | Send Feedback

CoreTrustSealre3dataOpenAIRERCUB