DAIS - Digital Archive of the Serbian Academy of Sciences and Arts
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   DAIS
  • Институт техничких наука САНУ / Institute of Technical Sciences of SASA
  • ИТН САНУ - Општа колекција / ITS SASA - General collection
  • View Item
  •   DAIS
  • Институт техничких наука САНУ / Institute of Technical Sciences of SASA
  • ИТН САНУ - Општа колекција / ITS SASA - General collection
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Solvothermal synthesis of Ag/ZnO and Pt/ZnO nanocomposites and comparison of their photocatalytic behaviors on dyes degradation

Authorized Users Only
2016
Authors
Muñoz-Fernandez, Lidia
Sierra-Fernández, Aránzazu
Milošević, Olivera
Rabanal, Maria Eugenia
Article (Published version)
Metadata
Show full item record
Abstract
Noble metal/ZnO nanoparticles were synthesized by a solvothermal method. The influence of reaction time, noble metal presence or kind of noble metal (Ag or Pt) was evaluated. The prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV–vis diffuse reflectance spectroscopy (DRS) and BET surface area analysis. Hexagonal wurtzite and fcc were obtained for crystalline structures for ZnO and Ag/Pt, respectively. No characteristic phases which correspond to crystalline impurities were detected. It was displayed that ZnO nanoparticles presented nanowire morphology (NWs), while the metallic silver or platinum were found taking on quasi-spherical nanoparticles morphology (NPs), which appeared well dispersed onto ZnO NWs surface. Regarding particle sizes, ZnO aspect ratios were 2.5–13.3, Ag and Pt diameters were 17.3–24.3 nm and around ≈6.3 nm, respectively. The photocatalytic behavior of the synthesized system...s was studied as well by the removing reaction of methylene blue (MB) in water solution. It was verified that the increase of the photocatalytic activity was due to the noble metal presence, exhibiting higher effect of silver than platinum. Photocatalytic results (all samples reached >70% MB elimination) demonstrated the viability of the noble metal/ZnO nanocomposites synthesized by solvothermal method for usage in environmental applications.

Keywords:
Ag/ZnO & Pt/ZnO nanocomposites / Spherical nanoparticles and nanowires / Solvothermal method / Photocatalysis
Source:
Advanced Powder Technology, 2016, 27, 3, 983-993
Publisher:
  • Elsevier
Funding / projects:
  • Innovation and Education Ministry, Spain, Project MAT2013-47460-C5-5-P
  • Autonomous Region Program of Madrid, Spain, MULTIMAT-CHALLENGE (ref. S2013/MIT-2862)
  • Rational design and synthesis of biologically active and coordination compounds and functional materials, relevant for (bio)nanotechnology (RS-172035)
  • Materials of Reduced Dimensions for Efficient Light Harvesting and Energy conversion (RS-45020)

DOI: 10.1016/j.apt.2016.03.021

ISSN: 0921-8831

WoS: 000377864600031

Scopus: 2-s2.0-85006173344
[ Google Scholar ]
63
43
Handle
https://hdl.handle.net/21.15107/rcub_dais_15991
URI
https://dais.sanu.ac.rs/123456789/15991
Collections
  • ИТН САНУ - Општа колекција / ITS SASA - General collection
Institution/Community
Институт техничких наука САНУ / Institute of Technical Sciences of SASA
TY  - JOUR
AU  - Muñoz-Fernandez, Lidia
AU  - Sierra-Fernández, Aránzazu
AU  - Milošević, Olivera
AU  - Rabanal, Maria Eugenia
PY  - 2016
UR  - https://dais.sanu.ac.rs/123456789/15991
AB  - Noble metal/ZnO nanoparticles were synthesized by a solvothermal method. The influence of reaction time, noble metal presence or kind of noble metal (Ag or Pt) was evaluated. The prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV–vis diffuse reflectance spectroscopy (DRS) and BET surface area analysis. Hexagonal wurtzite and fcc were obtained for crystalline structures for ZnO and Ag/Pt, respectively. No characteristic phases which correspond to crystalline impurities were detected. It was displayed that ZnO nanoparticles presented nanowire morphology (NWs), while the metallic silver or platinum were found taking on quasi-spherical nanoparticles morphology (NPs), which appeared well dispersed onto ZnO NWs surface. Regarding particle sizes, ZnO aspect ratios were 2.5–13.3, Ag and Pt diameters were 17.3–24.3 nm and around ≈6.3 nm, respectively. The photocatalytic behavior of the synthesized systems was studied as well by the removing reaction of methylene blue (MB) in water solution. It was verified that the increase of the photocatalytic activity was due to the noble metal presence, exhibiting higher effect of silver than platinum. Photocatalytic results (all samples reached >70% MB elimination) demonstrated the viability of the noble metal/ZnO nanocomposites synthesized by solvothermal method for usage in environmental applications.
PB  - Elsevier
T2  - Advanced Powder Technology
T1  - Solvothermal synthesis of Ag/ZnO and Pt/ZnO nanocomposites and comparison of their photocatalytic behaviors on dyes degradation
SP  - 983
EP  - 993
VL  - 27
IS  - 3
DO  - 10.1016/j.apt.2016.03.021
UR  - https://hdl.handle.net/21.15107/rcub_dais_15991
ER  - 
@article{
author = "Muñoz-Fernandez, Lidia and Sierra-Fernández, Aránzazu and Milošević, Olivera and Rabanal, Maria Eugenia",
year = "2016",
abstract = "Noble metal/ZnO nanoparticles were synthesized by a solvothermal method. The influence of reaction time, noble metal presence or kind of noble metal (Ag or Pt) was evaluated. The prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV–vis diffuse reflectance spectroscopy (DRS) and BET surface area analysis. Hexagonal wurtzite and fcc were obtained for crystalline structures for ZnO and Ag/Pt, respectively. No characteristic phases which correspond to crystalline impurities were detected. It was displayed that ZnO nanoparticles presented nanowire morphology (NWs), while the metallic silver or platinum were found taking on quasi-spherical nanoparticles morphology (NPs), which appeared well dispersed onto ZnO NWs surface. Regarding particle sizes, ZnO aspect ratios were 2.5–13.3, Ag and Pt diameters were 17.3–24.3 nm and around ≈6.3 nm, respectively. The photocatalytic behavior of the synthesized systems was studied as well by the removing reaction of methylene blue (MB) in water solution. It was verified that the increase of the photocatalytic activity was due to the noble metal presence, exhibiting higher effect of silver than platinum. Photocatalytic results (all samples reached >70% MB elimination) demonstrated the viability of the noble metal/ZnO nanocomposites synthesized by solvothermal method for usage in environmental applications.",
publisher = "Elsevier",
journal = "Advanced Powder Technology",
title = "Solvothermal synthesis of Ag/ZnO and Pt/ZnO nanocomposites and comparison of their photocatalytic behaviors on dyes degradation",
pages = "983-993",
volume = "27",
number = "3",
doi = "10.1016/j.apt.2016.03.021",
url = "https://hdl.handle.net/21.15107/rcub_dais_15991"
}
Muñoz-Fernandez, L., Sierra-Fernández, A., Milošević, O.,& Rabanal, M. E.. (2016). Solvothermal synthesis of Ag/ZnO and Pt/ZnO nanocomposites and comparison of their photocatalytic behaviors on dyes degradation. in Advanced Powder Technology
Elsevier., 27(3), 983-993.
https://doi.org/10.1016/j.apt.2016.03.021
https://hdl.handle.net/21.15107/rcub_dais_15991
Muñoz-Fernandez L, Sierra-Fernández A, Milošević O, Rabanal ME. Solvothermal synthesis of Ag/ZnO and Pt/ZnO nanocomposites and comparison of their photocatalytic behaviors on dyes degradation. in Advanced Powder Technology. 2016;27(3):983-993.
doi:10.1016/j.apt.2016.03.021
https://hdl.handle.net/21.15107/rcub_dais_15991 .
Muñoz-Fernandez, Lidia, Sierra-Fernández, Aránzazu, Milošević, Olivera, Rabanal, Maria Eugenia, "Solvothermal synthesis of Ag/ZnO and Pt/ZnO nanocomposites and comparison of their photocatalytic behaviors on dyes degradation" in Advanced Powder Technology, 27, no. 3 (2016):983-993,
https://doi.org/10.1016/j.apt.2016.03.021 .,
https://hdl.handle.net/21.15107/rcub_dais_15991 .

DSpace software copyright © 2002-2015  DuraSpace
About DAIS - Digital Archive of the Serbian Academy of Sciences and Arts | Send Feedback

CoreTrustSealre3dataOpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About DAIS - Digital Archive of the Serbian Academy of Sciences and Arts | Send Feedback

CoreTrustSealre3dataOpenAIRERCUB