DAIS - Digital Archive of the Serbian Academy of Sciences and Arts
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   DAIS
  • Институт техничких наука САНУ / Institute of Technical Sciences of SASA
  • ИТН САНУ - Општа колекција / ITS SASA - General collection
  • View Item
  •   DAIS
  • Институт техничких наука САНУ / Institute of Technical Sciences of SASA
  • ИТН САНУ - Општа колекција / ITS SASA - General collection
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Ni-(Ebonex-supported Ir) composite coatings as electrocatalysts for alkaline water electrolysis. Part II: Oxygen evolution

Authorized Users Only
2016
Authors
Jović, Borka
Lačnjevac, Uroš
Jović, Vladimir
Gajić Krstajić, Ljiljana
Kovač, Janez
Poleti, Dejan
Krstajić, Nedeljko
Article (Published version)
Metadata
Show full item record
Abstract
The oxygen evolution reaction (OER) was studied at pure Ni and Ni-(Ebonex/Ir) composite coatings in 1 M NaOH solution at 25 °C. Ni-(Ebonex-supported Ir) coatings were electrodeposited from a nickel Watts bath containing different concentrations of suspended Ebonex/Ir particles (0–2 g dm−3) onto a Ni 40 mesh substrate. The surface morphology of the coatings was examined by scanning electron microscopy (SEM), the surface composition by energy dispersive X-ray spectroscopy (EDS), X-ray powder diffraction (XRPD) and X-ray photoelectron spectroscopy (XPS), whereas the electrochemical properties were studied by electrochemical impedance spectroscopy (EIS), polarization measurements and cyclic voltammetry (CV). It was shown that the roughness factor of Ni-(Ebonex/Ir) composite coatings calculated relative to the surface area of the pure Ni sample increased with the increasing content of Ebonex/Ir particles in the bath to a maximum value of 40.6. All samples displayed a Tafel slope of about 60... mV dec−1 in the potential range corresponding to lower current densities for the OER. The increase of the apparent activity for the OER at Ni-(Ebonex/Ir) coatings compared with the pure Ni coating was attributed only to the increase of the electrochemically active surface area. Although the pure Ni coating initially exhibited higher intrinsic catalytic activity for the OER than the composite coatings, it also showed a drastic loss of activity after subjecting to continuous oxygen evolution at j = 50 mA cm−2 for 24 h (ΔE = 395 mV). At the same time, the OER overpotential at Ni-(Ebonex/Ir) coatings only negligibly increased after the stability test (ΔE = 22 mV). The improved retention of catalytic activity observed with Ni-(Ebonex/Ir) coatings was ascribed to the presence of IrO2, which inhibited the formation of the inactive γ-NiOOH phase.

Keywords:
Ni-composite coatings / O2 evolution / alkaline solution / Electrocatalysis / Intrinsic activity
Source:
International Journal of Hydrogen Energy, 2016, 41, 45, 20502-20514
Funding / projects:
  • Development, characterization and application nanostructured and composite electrocatalysts and interactive supports for fuel cells and water electrolysis (RS-172054)

DOI: 10.1016/j.ijhydene.2016.08.226

ISSN: 0360-3199

WoS: 000387522900009

Scopus: 2-s2.0-84994116576
[ Google Scholar ]
26
23
Handle
https://hdl.handle.net/21.15107/rcub_dais_15978
URI
https://dais.sanu.ac.rs/123456789/15978
Collections
  • ИТН САНУ - Општа колекција / ITS SASA - General collection
Institution/Community
Институт техничких наука САНУ / Institute of Technical Sciences of SASA
TY  - JOUR
AU  - Jović, Borka
AU  - Lačnjevac, Uroš
AU  - Jović, Vladimir
AU  - Gajić Krstajić, Ljiljana
AU  - Kovač, Janez
AU  - Poleti, Dejan
AU  - Krstajić, Nedeljko
PY  - 2016
UR  - https://dais.sanu.ac.rs/123456789/15978
AB  - The oxygen evolution reaction (OER) was studied at pure Ni and Ni-(Ebonex/Ir) composite coatings in 1 M NaOH solution at 25 °C. Ni-(Ebonex-supported Ir) coatings were electrodeposited from a nickel Watts bath containing different concentrations of suspended Ebonex/Ir particles (0–2 g dm−3) onto a Ni 40 mesh substrate. The surface morphology of the coatings was examined by scanning electron microscopy (SEM), the surface composition by energy dispersive X-ray spectroscopy (EDS), X-ray powder diffraction (XRPD) and X-ray photoelectron spectroscopy (XPS), whereas the electrochemical properties were studied by electrochemical impedance spectroscopy (EIS), polarization measurements and cyclic voltammetry (CV). It was shown that the roughness factor of Ni-(Ebonex/Ir) composite coatings calculated relative to the surface area of the pure Ni sample increased with the increasing content of Ebonex/Ir particles in the bath to a maximum value of 40.6. All samples displayed a Tafel slope of about 60 mV dec−1 in the potential range corresponding to lower current densities for the OER. The increase of the apparent activity for the OER at Ni-(Ebonex/Ir) coatings compared with the pure Ni coating was attributed only to the increase of the electrochemically active surface area. Although the pure Ni coating initially exhibited higher intrinsic catalytic activity for the OER than the composite coatings, it also showed a drastic loss of activity after subjecting to continuous oxygen evolution at j = 50 mA cm−2 for 24 h (ΔE = 395 mV). At the same time, the OER overpotential at Ni-(Ebonex/Ir) coatings only negligibly increased after the stability test (ΔE = 22 mV). The improved retention of catalytic activity observed with Ni-(Ebonex/Ir) coatings was ascribed to the presence of IrO2, which inhibited the formation of the inactive γ-NiOOH phase.
T2  - International Journal of Hydrogen Energy
T1  - Ni-(Ebonex-supported Ir) composite coatings as electrocatalysts for alkaline water electrolysis. Part II: Oxygen evolution
SP  - 20502
EP  - 20514
VL  - 41
IS  - 45
DO  - 10.1016/j.ijhydene.2016.08.226
UR  - https://hdl.handle.net/21.15107/rcub_dais_15978
ER  - 
@article{
author = "Jović, Borka and Lačnjevac, Uroš and Jović, Vladimir and Gajić Krstajić, Ljiljana and Kovač, Janez and Poleti, Dejan and Krstajić, Nedeljko",
year = "2016",
abstract = "The oxygen evolution reaction (OER) was studied at pure Ni and Ni-(Ebonex/Ir) composite coatings in 1 M NaOH solution at 25 °C. Ni-(Ebonex-supported Ir) coatings were electrodeposited from a nickel Watts bath containing different concentrations of suspended Ebonex/Ir particles (0–2 g dm−3) onto a Ni 40 mesh substrate. The surface morphology of the coatings was examined by scanning electron microscopy (SEM), the surface composition by energy dispersive X-ray spectroscopy (EDS), X-ray powder diffraction (XRPD) and X-ray photoelectron spectroscopy (XPS), whereas the electrochemical properties were studied by electrochemical impedance spectroscopy (EIS), polarization measurements and cyclic voltammetry (CV). It was shown that the roughness factor of Ni-(Ebonex/Ir) composite coatings calculated relative to the surface area of the pure Ni sample increased with the increasing content of Ebonex/Ir particles in the bath to a maximum value of 40.6. All samples displayed a Tafel slope of about 60 mV dec−1 in the potential range corresponding to lower current densities for the OER. The increase of the apparent activity for the OER at Ni-(Ebonex/Ir) coatings compared with the pure Ni coating was attributed only to the increase of the electrochemically active surface area. Although the pure Ni coating initially exhibited higher intrinsic catalytic activity for the OER than the composite coatings, it also showed a drastic loss of activity after subjecting to continuous oxygen evolution at j = 50 mA cm−2 for 24 h (ΔE = 395 mV). At the same time, the OER overpotential at Ni-(Ebonex/Ir) coatings only negligibly increased after the stability test (ΔE = 22 mV). The improved retention of catalytic activity observed with Ni-(Ebonex/Ir) coatings was ascribed to the presence of IrO2, which inhibited the formation of the inactive γ-NiOOH phase.",
journal = "International Journal of Hydrogen Energy",
title = "Ni-(Ebonex-supported Ir) composite coatings as electrocatalysts for alkaline water electrolysis. Part II: Oxygen evolution",
pages = "20502-20514",
volume = "41",
number = "45",
doi = "10.1016/j.ijhydene.2016.08.226",
url = "https://hdl.handle.net/21.15107/rcub_dais_15978"
}
Jović, B., Lačnjevac, U., Jović, V., Gajić Krstajić, L., Kovač, J., Poleti, D.,& Krstajić, N.. (2016). Ni-(Ebonex-supported Ir) composite coatings as electrocatalysts for alkaline water electrolysis. Part II: Oxygen evolution. in International Journal of Hydrogen Energy, 41(45), 20502-20514.
https://doi.org/10.1016/j.ijhydene.2016.08.226
https://hdl.handle.net/21.15107/rcub_dais_15978
Jović B, Lačnjevac U, Jović V, Gajić Krstajić L, Kovač J, Poleti D, Krstajić N. Ni-(Ebonex-supported Ir) composite coatings as electrocatalysts for alkaline water electrolysis. Part II: Oxygen evolution. in International Journal of Hydrogen Energy. 2016;41(45):20502-20514.
doi:10.1016/j.ijhydene.2016.08.226
https://hdl.handle.net/21.15107/rcub_dais_15978 .
Jović, Borka, Lačnjevac, Uroš, Jović, Vladimir, Gajić Krstajić, Ljiljana, Kovač, Janez, Poleti, Dejan, Krstajić, Nedeljko, "Ni-(Ebonex-supported Ir) composite coatings as electrocatalysts for alkaline water electrolysis. Part II: Oxygen evolution" in International Journal of Hydrogen Energy, 41, no. 45 (2016):20502-20514,
https://doi.org/10.1016/j.ijhydene.2016.08.226 .,
https://hdl.handle.net/21.15107/rcub_dais_15978 .

DSpace software copyright © 2002-2015  DuraSpace
About DAIS - Digital Archive of the Serbian Academy of Sciences and Arts | Send Feedback

re3dataOpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About DAIS - Digital Archive of the Serbian Academy of Sciences and Arts | Send Feedback

re3dataOpenAIRERCUB