DAIS - Digital Archive of the Serbian Academy of Sciences and Arts
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrilic)
    • Serbian (Latin)
  • Login
View Item 
  •   DAIS
  • Институт техничких наука САНУ / Institute of Technical Sciences of SASA
  • ITN SANU - Opšta kolekcija / ITS SASA - General collection
  • View Item
  •   DAIS
  • Институт техничких наука САНУ / Institute of Technical Sciences of SASA
  • ITN SANU - Opšta kolekcija / ITS SASA - General collection
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Optical and morpho-structural properties of ZnO nanostructured particles synthesized at low temperature via air-assisted USP method

Authorized Users Only
2016
Authors
Flores-Carrasco, Gregorio
Carrillo-Lopez, J.
Martinez-Martinez, R.
Espinosa-Torres, N. D.
Muñoz, Lidia
Milošević, Olivera
Rabanal, Maria Eugenia
Article (Published version)
Metadata
Show full item record
Abstract
Here, we report on the ZnO nanoparticles processing employing low-temperature (500 °C) ultrasonic spray pyrolysis (USP) method, using different Zn nitrate precursor solution concentrations (0.01, 0.1 and 1.0 M). Particle structural, morphological and luminescence characteristics were studied based on X-ray powder diffractometry, Fourier transform infrared spectroscopy, transmission electron microscopy (TEM/HRTEM), thermal analysis, UV–Vis diffuse reflectance spectra and photoluminescence measurements (PL). The generated so-called secondary particles have a hexagonal ZnO wurtzite-type crystalline structure with preferred orientation of (101) plane and quasi-spherical in shape. It was shown that such particle structural and morphological features are independent on the precursor solution concentrations used. All the PL spectra illustrate a strong green-yellow typical emission band exhibiting the corresponding redshift and variation of direct band gap from 3.22 to 3.12 eV with the increas...e in precursor concentration. The thermal analysis confirmed high thermal nanoparticles stability. The results proved that USP method successfully produces ZnO nanoparticles using neither dispersing agents nor post-heating treatments at high temperature, which allows rapid, continuous, single-step preparation, demonstrating a high potential for industrial applications.

Keywords:
ZnO nanoparticles / ultrasonic spray pyrolysis (USP) / Zn nitrate / hexagonal ZnO / PL spectra
Source:
Applied Physics A, 2016, 122
Publisher:
  • Springer Berlin Heidelberg
Projects:
  • Rational design and synthesis of biologically active and coordination compounds and functional materials, relevant for (bio)nanotechnology (RS-172035)
  • Innovation and Education Ministry, Spain, Project MAT2013-47460-C5-5-P
  • Autonomous Region Program of Madrid, Spain, MULTIMAT-CHALLENGE (ref. S2013/MIT-2862)

DOI: 10.1007/s00339-016-9708-4

ISSN: 1432-0630 (Online); 0947-8396 (Print)

WoS: 000371041700032

Scopus: 2-s2.0-84959561307
[ Google Scholar ]
7
4
URI
http://dais.sanu.ac.rs/123456789/15968
Collections
  • ITN SANU - Opšta kolekcija / ITS SASA - General collection
Institution
Институт техничких наука САНУ / Institute of Technical Sciences of SASA
TY  - JOUR
AU  - Flores-Carrasco, Gregorio
AU  - Carrillo-Lopez, J.
AU  - Martinez-Martinez, R.
AU  - Espinosa-Torres, N. D.
AU  - Muñoz, Lidia
AU  - Milošević, Olivera
AU  - Rabanal, Maria Eugenia
PY  - 2016
UR  - http://dais.sanu.ac.rs/123456789/15968
AB  - Here, we report on the ZnO nanoparticles processing employing low-temperature (500 °C) ultrasonic spray pyrolysis (USP) method, using different Zn nitrate precursor solution concentrations (0.01, 0.1 and 1.0 M). Particle structural, morphological and luminescence characteristics were studied based on X-ray powder diffractometry, Fourier transform infrared spectroscopy, transmission electron microscopy (TEM/HRTEM), thermal analysis, UV–Vis diffuse reflectance spectra and photoluminescence measurements (PL). The generated so-called secondary particles have a hexagonal ZnO wurtzite-type crystalline structure with preferred orientation of (101) plane and quasi-spherical in shape. It was shown that such particle structural and morphological features are independent on the precursor solution concentrations used. All the PL spectra illustrate a strong green-yellow typical emission band exhibiting the corresponding redshift and variation of direct band gap from 3.22 to 3.12 eV with the increase in precursor concentration. The thermal analysis confirmed high thermal nanoparticles stability. The results proved that USP method successfully produces ZnO nanoparticles using neither dispersing agents nor post-heating treatments at high temperature, which allows rapid, continuous, single-step preparation, demonstrating a high potential for industrial applications.
PB  - Springer Berlin Heidelberg
T2  - Applied Physics A
T1  - Optical and morpho-structural properties of ZnO nanostructured particles synthesized at low temperature via air-assisted USP method
VL  - 122
DO  - 10.1007/s00339-016-9708-4
ER  - 
@article{
author = "Flores-Carrasco, Gregorio and Carrillo-Lopez, J. and Martinez-Martinez, R. and Espinosa-Torres, N. D. and Muñoz, Lidia and Milošević, Olivera and Rabanal, Maria Eugenia",
year = "2016",
url = "http://dais.sanu.ac.rs/123456789/15968",
abstract = "Here, we report on the ZnO nanoparticles processing employing low-temperature (500 °C) ultrasonic spray pyrolysis (USP) method, using different Zn nitrate precursor solution concentrations (0.01, 0.1 and 1.0 M). Particle structural, morphological and luminescence characteristics were studied based on X-ray powder diffractometry, Fourier transform infrared spectroscopy, transmission electron microscopy (TEM/HRTEM), thermal analysis, UV–Vis diffuse reflectance spectra and photoluminescence measurements (PL). The generated so-called secondary particles have a hexagonal ZnO wurtzite-type crystalline structure with preferred orientation of (101) plane and quasi-spherical in shape. It was shown that such particle structural and morphological features are independent on the precursor solution concentrations used. All the PL spectra illustrate a strong green-yellow typical emission band exhibiting the corresponding redshift and variation of direct band gap from 3.22 to 3.12 eV with the increase in precursor concentration. The thermal analysis confirmed high thermal nanoparticles stability. The results proved that USP method successfully produces ZnO nanoparticles using neither dispersing agents nor post-heating treatments at high temperature, which allows rapid, continuous, single-step preparation, demonstrating a high potential for industrial applications.",
publisher = "Springer Berlin Heidelberg",
journal = "Applied Physics A",
title = "Optical and morpho-structural properties of ZnO nanostructured particles synthesized at low temperature via air-assisted USP method",
volume = "122",
doi = "10.1007/s00339-016-9708-4"
}
Flores-Carrasco G, Carrillo-Lopez J, Martinez-Martinez R, Espinosa-Torres ND, Muñoz L, Milošević O, Rabanal ME. Optical and morpho-structural properties of ZnO nanostructured particles synthesized at low temperature via air-assisted USP method. Applied Physics A. 2016;122
Flores-Carrasco, G., Carrillo-Lopez, J., Martinez-Martinez, R., Espinosa-Torres, N. D., Muñoz, L., Milošević, O.,& Rabanal, M. E. (2016). Optical and morpho-structural properties of ZnO nanostructured particles synthesized at low temperature via air-assisted USP method.
Applied Physics ASpringer Berlin Heidelberg., 122. 
https://doi.org/10.1007/s00339-016-9708-4
Flores-Carrasco Gregorio, Carrillo-Lopez J., Martinez-Martinez R., Espinosa-Torres N. D., Muñoz Lidia, Milošević Olivera, Rabanal Maria Eugenia, "Optical and morpho-structural properties of ZnO nanostructured particles synthesized at low temperature via air-assisted USP method" 122 (2016),
https://doi.org/10.1007/s00339-016-9708-4 .

DSpace software copyright © 2002-2015  DuraSpace
About DAIS - Digital Archive of the Serbian Academy of Sciences and Arts | Send Feedback

re3dataOpenAIRERCUB
 

 

All of DSpaceInstitutionsAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About DAIS - Digital Archive of the Serbian Academy of Sciences and Arts | Send Feedback

re3dataOpenAIRERCUB