DAIS - Digital Archive of the Serbian Academy of Sciences and Arts
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   DAIS
  • Институт техничких наука САНУ / Institute of Technical Sciences of SASA
  • ИТН САНУ - Општа колекција / ITS SASA - General collection
  • View Item
  •   DAIS
  • Институт техничких наука САНУ / Institute of Technical Sciences of SASA
  • ИТН САНУ - Општа колекција / ITS SASA - General collection
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Multi-phase (Zr,Ti,Me)B2 solid solutions: preparation and microstructure evolution

Thumbnail
2022
Silvestroni_ACA-X-2022.pdf (5.852Mb)
Authors
Silvestroni, Laura
Gilli, Nicola
Obradović, Nina
Filipović, Suzana
Watts, Jeremy L.
Fahrenholtz, William G.
Conference object (Published version)
Metadata
Show full item record
Abstract
ZrB2 is widely recognized as the most prominent ultra-high temperature ceramic for aerospace applications, in view of its melting point above 3000°C, and despite it exhibits lower oxidation and ablation resistance as compared to HfB2, it has a much lower density. The addition of TiB2 further lowers the overall weight, which is a relevant factor for materials intended to flight, but it also worsen the oxidation resistance. In this work, different Mecompounds, where Me = Nb, Hf, Cr, V, are added to the ZrB2-TiB2 system to study their effect on the densification, microstructure and thermo-mechanical properties. By adjusting the processing and sintering cycles, fully dense multi-phase ceramics with density in the 5.3-5.7 g/cm3 range and hardness close to 24 GPa have been obtained. A common feature to all materials, is the formation of solid solutions and microstructural details obtained by x-ray diffraction, scanning and electron microscopy are highlighted. Particularly, we explored the na...notexturing of the shell within micron-sized boride grains of the matrix, which resulted from the preferential precipitation of Me-compounds with poor solubility within ZrB2 or TiB2 lattice. Preliminary bending strength and oxidation behavior of these intricate bulk multiphase ceramics are also provided.

Keywords:
ZrB2 / multi-phase ceramics / microstructure evolution / TiB2
Source:
Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application X New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 26-27. September 2022., 2022, 37-37
Publisher:
  • Belgrade : Serbian Ceramic Society

ISBN: 978-86-915627-9-3

[ Google Scholar ]
Handle
https://hdl.handle.net/21.15107/rcub_dais_13617
URI
https://dais.sanu.ac.rs/123456789/13617
Collections
  • ИТН САНУ - Општа колекција / ITS SASA - General collection
Institution/Community
Институт техничких наука САНУ / Institute of Technical Sciences of SASA
TY  - CONF
AU  - Silvestroni, Laura
AU  - Gilli, Nicola
AU  - Obradović, Nina
AU  - Filipović, Suzana
AU  - Watts, Jeremy L.
AU  - Fahrenholtz, William G.
PY  - 2022
UR  - https://dais.sanu.ac.rs/123456789/13617
AB  - ZrB2 is widely recognized as the most prominent ultra-high temperature ceramic for aerospace applications, in view of its melting point above 3000°C, and despite it exhibits lower oxidation and ablation resistance as compared to HfB2, it has a much lower density. The addition of TiB2 further lowers the overall weight, which is a relevant factor for materials intended to flight, but it also worsen the oxidation resistance. In this work, different Mecompounds, where Me = Nb, Hf, Cr, V, are added to the ZrB2-TiB2 system to study their effect on the densification, microstructure and thermo-mechanical properties. By adjusting the processing and sintering cycles, fully dense multi-phase ceramics with density in the 5.3-5.7 g/cm3 range and hardness close to 24 GPa have been obtained. A common feature to all materials, is the formation of solid solutions and microstructural details obtained by x-ray diffraction, scanning and electron microscopy are highlighted. Particularly, we explored the nanotexturing of the shell within micron-sized boride grains of the matrix, which resulted from the preferential precipitation of Me-compounds with poor solubility within ZrB2 or TiB2 lattice. Preliminary bending strength and oxidation behavior of these intricate bulk multiphase ceramics are also provided.
PB  - Belgrade : Serbian Ceramic Society
C3  - Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application X New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 26-27. September 2022.
T1  - Multi-phase (Zr,Ti,Me)B2 solid solutions: preparation and microstructure evolution
SP  - 37
EP  - 37
UR  - https://hdl.handle.net/21.15107/rcub_dais_13617
ER  - 
@conference{
author = "Silvestroni, Laura and Gilli, Nicola and Obradović, Nina and Filipović, Suzana and Watts, Jeremy L. and Fahrenholtz, William G.",
year = "2022",
abstract = "ZrB2 is widely recognized as the most prominent ultra-high temperature ceramic for aerospace applications, in view of its melting point above 3000°C, and despite it exhibits lower oxidation and ablation resistance as compared to HfB2, it has a much lower density. The addition of TiB2 further lowers the overall weight, which is a relevant factor for materials intended to flight, but it also worsen the oxidation resistance. In this work, different Mecompounds, where Me = Nb, Hf, Cr, V, are added to the ZrB2-TiB2 system to study their effect on the densification, microstructure and thermo-mechanical properties. By adjusting the processing and sintering cycles, fully dense multi-phase ceramics with density in the 5.3-5.7 g/cm3 range and hardness close to 24 GPa have been obtained. A common feature to all materials, is the formation of solid solutions and microstructural details obtained by x-ray diffraction, scanning and electron microscopy are highlighted. Particularly, we explored the nanotexturing of the shell within micron-sized boride grains of the matrix, which resulted from the preferential precipitation of Me-compounds with poor solubility within ZrB2 or TiB2 lattice. Preliminary bending strength and oxidation behavior of these intricate bulk multiphase ceramics are also provided.",
publisher = "Belgrade : Serbian Ceramic Society",
journal = "Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application X New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 26-27. September 2022.",
title = "Multi-phase (Zr,Ti,Me)B2 solid solutions: preparation and microstructure evolution",
pages = "37-37",
url = "https://hdl.handle.net/21.15107/rcub_dais_13617"
}
Silvestroni, L., Gilli, N., Obradović, N., Filipović, S., Watts, J. L.,& Fahrenholtz, W. G.. (2022). Multi-phase (Zr,Ti,Me)B2 solid solutions: preparation and microstructure evolution. in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application X New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 26-27. September 2022.
Belgrade : Serbian Ceramic Society., 37-37.
https://hdl.handle.net/21.15107/rcub_dais_13617
Silvestroni L, Gilli N, Obradović N, Filipović S, Watts JL, Fahrenholtz WG. Multi-phase (Zr,Ti,Me)B2 solid solutions: preparation and microstructure evolution. in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application X New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 26-27. September 2022.. 2022;:37-37.
https://hdl.handle.net/21.15107/rcub_dais_13617 .
Silvestroni, Laura, Gilli, Nicola, Obradović, Nina, Filipović, Suzana, Watts, Jeremy L., Fahrenholtz, William G., "Multi-phase (Zr,Ti,Me)B2 solid solutions: preparation and microstructure evolution" in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application X New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 26-27. September 2022. (2022):37-37,
https://hdl.handle.net/21.15107/rcub_dais_13617 .

DSpace software copyright © 2002-2015  DuraSpace
About DAIS - Digital Archive of the Serbian Academy of Sciences and Arts | Send Feedback

CoreTrustSealre3dataOpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About DAIS - Digital Archive of the Serbian Academy of Sciences and Arts | Send Feedback

CoreTrustSealre3dataOpenAIRERCUB