DAIS - Digital Archive of the Serbian Academy of Sciences and Arts
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   DAIS
  • Институт техничких наука САНУ / Institute of Technical Sciences of SASA
  • ИТН САНУ - Општа колекција / ITS SASA - General collection
  • View Item
  •   DAIS
  • Институт техничких наука САНУ / Institute of Technical Sciences of SASA
  • ИТН САНУ - Општа колекција / ITS SASA - General collection
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Synthesis and characterization of a collagen-based composite material containing selenium nanoparticles

Authorized Users Only
2022
Authors
Stevanović, Magdalena
Filipović, Nenad
Kuzmanović, Maja
Tomić, Nina
Ušjak, Dušan
Milenković, Marina
Zheng, Kai
Stampfl, Juergen
Boccaccini, Aldo
Article (Published version)
Metadata
Show full item record
Abstract
Multidrug-resistant bacterial strains represent an emerging global health threat and a great obstacle for bone tissue engineering. One of the major components of the extracellular matrix of the bone is a collagen protein, while selenium is an element that has antimicrobial potential, and is also important for bone metabolism and bone health. Here we represent the incorporation of selenium nanoparticles (SeNPs) synthesized by the green chemical reduction method into collagen gels to produce a composite material, collagen/SeNPs, with antimicrobial properties. The samples were comprehensively characterized by zeta potential measurements, dynamic light scattering inductively coupled plasma-mass spectrometry (ICP-MS), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), optical microscopy, field-emission scanning electron microscopy (FE-SEM), and differential scanning calorimetry The cytotoxicity of the SeNPS, as well as collagen/SeNPs, was tested on the MRC-5 cells. It ...was revealed that collagen/SeNPS expressed a lower cytotoxic effect. Collagen/SeNPs showed significant antibacterial activity against all tested Gram-positive strains, the major causative agents of orthopedic infections as well as Candida albicans. Furthermore, three-dimensional β-tricalcium phosphate (3D-TCP) scaffolds were fabricated by a well-established 3D printing (lithography) method, and afterward preliminary coated by newly-synthesized SeNPs or collagen/SeNPs. In addition, uncoated 3D-TCP scaffolds as well as coated by collagen/SeNPs were subjected to biofilm formation. The production of Staphylococcus aureus biofilm on coated scaffolds by collagen/SeNPs was significantly reduced compared to the uncoated ones. © The Author(s) 2022.

Keywords:
scanning electron microscopy (SEM) / biocompatibility / biomaterials / composite materials / scaffolds / antibacterial agents / antimicrobial activity / bacteria / biomaterials / composite materials / differential scanning calorimetry / escherichia coli / extracellular matrices / Fourier transform infrared spectroscopy / MTT assay / nanoparticles / pseudomonas aeruginosa / scaffolds / staphylococcus aureus / synthesis (chemical) / X ray diffraction / antibacterial activity / antimicrobial activity / biofilm / biomaterial / bone tissue / calcium phosphate / cell viability / collagen gel / colorimetry / cytotoxicity / dimethyl sulfoxide / extracellular matrix / field emission scanning electron microscopy / human cells / quantitative analysis / scaffold protein / stereolithography / tissue engineering / zeta potential / selenium nanoparticles / biofilms / bacillus subtilis / Field emission microscopy / thermal analysis / 3D printers / differential scanning calorimetry / light scattering / composite materials / health risks / bone tissue engineering / Candida albicans / Klebsiella pneumoniae / bone metabolism / Enterococcus faecalis / inductively coupled plasma mass spectrometry / mesenchymal stem cell / MRC-5 cell line / multidrug resistants / photon correlation spectroscopy / Salmonella enterica serovar Typhimurium / sodium selenite / triphenyltetrazolium
Source:
Journal of Biomaterials Applications, 2022, 36, 10, 1800-1811
Funding / projects:
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200175 (Institute of Technical Sciences of SASA, Belgrade) (RS-200175)
  • Bilateral project between Serbia and Austria (project No: SRB 24/2018, project title: Scaffolds with controlled 3-D architecture designed by photopolymerization)
  • Bilateral project between Serbia and Germany (DAAD project 57514776)

DOI: 10.1177/08853282211073731

ISSN: 0885-3282

WoS: 000764244600001

Scopus: 2-s2.0-85126034982
[ Google Scholar ]
Handle
https://hdl.handle.net/21.15107/rcub_dais_13579
URI
https://dais.sanu.ac.rs/123456789/13579
Collections
  • ИТН САНУ - Општа колекција / ITS SASA - General collection
Institution/Community
Институт техничких наука САНУ / Institute of Technical Sciences of SASA
TY  - JOUR
AU  - Stevanović, Magdalena
AU  - Filipović, Nenad
AU  - Kuzmanović, Maja
AU  - Tomić, Nina
AU  - Ušjak, Dušan
AU  - Milenković, Marina
AU  - Zheng, Kai
AU  - Stampfl, Juergen
AU  - Boccaccini, Aldo
PY  - 2022
UR  - https://dais.sanu.ac.rs/123456789/13579
AB  - Multidrug-resistant bacterial strains represent an emerging global health threat and a great obstacle for bone tissue engineering. One of the major components of the extracellular matrix of the bone is a collagen protein, while selenium is an element that has antimicrobial potential, and is also important for bone metabolism and bone health. Here we represent the incorporation of selenium nanoparticles (SeNPs) synthesized by the green chemical reduction method into collagen gels to produce a composite material, collagen/SeNPs, with antimicrobial properties. The samples were comprehensively characterized by zeta potential measurements, dynamic light scattering inductively coupled plasma-mass spectrometry (ICP-MS), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), optical microscopy, field-emission scanning electron microscopy (FE-SEM), and differential scanning calorimetry The cytotoxicity of the SeNPS, as well as collagen/SeNPs, was tested on the MRC-5 cells. It was revealed that collagen/SeNPS expressed a lower cytotoxic effect. Collagen/SeNPs showed significant antibacterial activity against all tested Gram-positive strains, the major causative agents of orthopedic infections as well as Candida albicans. Furthermore, three-dimensional β-tricalcium phosphate (3D-TCP) scaffolds were fabricated by a well-established 3D printing (lithography) method, and afterward preliminary coated by newly-synthesized SeNPs or collagen/SeNPs. In addition, uncoated 3D-TCP scaffolds as well as coated by collagen/SeNPs were subjected to biofilm formation. The production of Staphylococcus aureus biofilm on coated scaffolds by collagen/SeNPs was significantly reduced compared to the uncoated ones. © The Author(s) 2022.
T2  - Journal of Biomaterials Applications
T1  - Synthesis and characterization of a collagen-based composite material containing selenium nanoparticles
SP  - 1800
EP  - 1811
VL  - 36
IS  - 10
DO  - 10.1177/08853282211073731
UR  - https://hdl.handle.net/21.15107/rcub_dais_13579
ER  - 
@article{
author = "Stevanović, Magdalena and Filipović, Nenad and Kuzmanović, Maja and Tomić, Nina and Ušjak, Dušan and Milenković, Marina and Zheng, Kai and Stampfl, Juergen and Boccaccini, Aldo",
year = "2022",
abstract = "Multidrug-resistant bacterial strains represent an emerging global health threat and a great obstacle for bone tissue engineering. One of the major components of the extracellular matrix of the bone is a collagen protein, while selenium is an element that has antimicrobial potential, and is also important for bone metabolism and bone health. Here we represent the incorporation of selenium nanoparticles (SeNPs) synthesized by the green chemical reduction method into collagen gels to produce a composite material, collagen/SeNPs, with antimicrobial properties. The samples were comprehensively characterized by zeta potential measurements, dynamic light scattering inductively coupled plasma-mass spectrometry (ICP-MS), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), optical microscopy, field-emission scanning electron microscopy (FE-SEM), and differential scanning calorimetry The cytotoxicity of the SeNPS, as well as collagen/SeNPs, was tested on the MRC-5 cells. It was revealed that collagen/SeNPS expressed a lower cytotoxic effect. Collagen/SeNPs showed significant antibacterial activity against all tested Gram-positive strains, the major causative agents of orthopedic infections as well as Candida albicans. Furthermore, three-dimensional β-tricalcium phosphate (3D-TCP) scaffolds were fabricated by a well-established 3D printing (lithography) method, and afterward preliminary coated by newly-synthesized SeNPs or collagen/SeNPs. In addition, uncoated 3D-TCP scaffolds as well as coated by collagen/SeNPs were subjected to biofilm formation. The production of Staphylococcus aureus biofilm on coated scaffolds by collagen/SeNPs was significantly reduced compared to the uncoated ones. © The Author(s) 2022.",
journal = "Journal of Biomaterials Applications",
title = "Synthesis and characterization of a collagen-based composite material containing selenium nanoparticles",
pages = "1800-1811",
volume = "36",
number = "10",
doi = "10.1177/08853282211073731",
url = "https://hdl.handle.net/21.15107/rcub_dais_13579"
}
Stevanović, M., Filipović, N., Kuzmanović, M., Tomić, N., Ušjak, D., Milenković, M., Zheng, K., Stampfl, J.,& Boccaccini, A.. (2022). Synthesis and characterization of a collagen-based composite material containing selenium nanoparticles. in Journal of Biomaterials Applications, 36(10), 1800-1811.
https://doi.org/10.1177/08853282211073731
https://hdl.handle.net/21.15107/rcub_dais_13579
Stevanović M, Filipović N, Kuzmanović M, Tomić N, Ušjak D, Milenković M, Zheng K, Stampfl J, Boccaccini A. Synthesis and characterization of a collagen-based composite material containing selenium nanoparticles. in Journal of Biomaterials Applications. 2022;36(10):1800-1811.
doi:10.1177/08853282211073731
https://hdl.handle.net/21.15107/rcub_dais_13579 .
Stevanović, Magdalena, Filipović, Nenad, Kuzmanović, Maja, Tomić, Nina, Ušjak, Dušan, Milenković, Marina, Zheng, Kai, Stampfl, Juergen, Boccaccini, Aldo, "Synthesis and characterization of a collagen-based composite material containing selenium nanoparticles" in Journal of Biomaterials Applications, 36, no. 10 (2022):1800-1811,
https://doi.org/10.1177/08853282211073731 .,
https://hdl.handle.net/21.15107/rcub_dais_13579 .

DSpace software copyright © 2002-2015  DuraSpace
About DAIS - Digital Archive of the Serbian Academy of Sciences and Arts | Send Feedback

CoreTrustSealre3dataOpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About DAIS - Digital Archive of the Serbian Academy of Sciences and Arts | Send Feedback

CoreTrustSealre3dataOpenAIRERCUB