Measurement of dielectric permitivity using coaxial chambers and electromagnetic-modeling software
Authors
Obradović, Nina
Peleš, Adriana

Olćan, Dragan

Fahrenholtz, William G.

Đorđević, Antonije

Pavlović, Vladimir B.

Conference object (Published version)
Metadata
Show full item recordAbstract
Our research group has developed a method for measurement of complex relative permittivity of various dielectric materials in the frequency range from around 1 kHz up to several GHz. Material samples have preferably a disk shape. The thicknesses of the samples can be in a wide range, from about 10 μm (thick films) up to several mm. We have designed and manufactured a set of coaxial chambers, which we use as test fixtures. We have also developed two numerical-simulation programs for the electromagnetic analysis of bodies with rotational symmetry. One program is suitable for the low-frequency analysis. It is based on an electrostatic approach. The other program is based on an electrodynamic approach and it is tailored for microwave frequencies. In measurements, we use impedance meters and network analyzers to obtain the input impedance of a chamber with a sample. Thereafter, we implement our software for the electromagnetic modeling to extract the relative permittivity of the measured sa...mple. As examples of verification of our method, we present here results for the relative permittivities of two sets of samples whose sizes are on the extreme limits of the method. The first set comprises poly (vinylidene fluoride) and mechanically activated ZnO nanoparticle composite films, whose relative permittivities are around 1.8. The second set comprises large, high-density samples of spinel (aluminum magnesium oxide) ceramics, sintered under various conditions. The measured relative permittivities of these samples are around 7.5. In all cases, good agreement with other available data has been obtained.
Keywords:
permittivity / measurements / electromagnetic-modeling software / ceramic materials / PVDFSource:
Programme and The Book of Abstracts / International Conference of Experimental and Numerical Investigations and New Technologies - CNN TECH 2021,29 June - 02 July 2021, Zlatibor, Serbia, 2021, 82-82Publisher:
- Belgrade : Innovation Center of Faculty of Mechanical Engineering
Funding / projects:
- Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200175 (Institute of Technical Sciences of SASA, Belgrade) (RS-200175)
- Serbian Academy of Sciences and Arts, Project F-133
Institution/Community
Институт техничких наука САНУ / Institute of Technical Sciences of SASATY - CONF AU - Obradović, Nina AU - Peleš, Adriana AU - Olćan, Dragan AU - Fahrenholtz, William G. AU - Đorđević, Antonije AU - Pavlović, Vladimir B. PY - 2021 UR - https://dais.sanu.ac.rs/123456789/12351 AB - Our research group has developed a method for measurement of complex relative permittivity of various dielectric materials in the frequency range from around 1 kHz up to several GHz. Material samples have preferably a disk shape. The thicknesses of the samples can be in a wide range, from about 10 μm (thick films) up to several mm. We have designed and manufactured a set of coaxial chambers, which we use as test fixtures. We have also developed two numerical-simulation programs for the electromagnetic analysis of bodies with rotational symmetry. One program is suitable for the low-frequency analysis. It is based on an electrostatic approach. The other program is based on an electrodynamic approach and it is tailored for microwave frequencies. In measurements, we use impedance meters and network analyzers to obtain the input impedance of a chamber with a sample. Thereafter, we implement our software for the electromagnetic modeling to extract the relative permittivity of the measured sample. As examples of verification of our method, we present here results for the relative permittivities of two sets of samples whose sizes are on the extreme limits of the method. The first set comprises poly (vinylidene fluoride) and mechanically activated ZnO nanoparticle composite films, whose relative permittivities are around 1.8. The second set comprises large, high-density samples of spinel (aluminum magnesium oxide) ceramics, sintered under various conditions. The measured relative permittivities of these samples are around 7.5. In all cases, good agreement with other available data has been obtained. PB - Belgrade : Innovation Center of Faculty of Mechanical Engineering C3 - Programme and The Book of Abstracts / International Conference of Experimental and Numerical Investigations and New Technologies - CNN TECH 2021,29 June - 02 July 2021, Zlatibor, Serbia T1 - Measurement of dielectric permitivity using coaxial chambers and electromagnetic-modeling software SP - 82 EP - 82 UR - https://hdl.handle.net/21.15107/rcub_dais_12351 ER -
@conference{ author = "Obradović, Nina and Peleš, Adriana and Olćan, Dragan and Fahrenholtz, William G. and Đorđević, Antonije and Pavlović, Vladimir B.", year = "2021", abstract = "Our research group has developed a method for measurement of complex relative permittivity of various dielectric materials in the frequency range from around 1 kHz up to several GHz. Material samples have preferably a disk shape. The thicknesses of the samples can be in a wide range, from about 10 μm (thick films) up to several mm. We have designed and manufactured a set of coaxial chambers, which we use as test fixtures. We have also developed two numerical-simulation programs for the electromagnetic analysis of bodies with rotational symmetry. One program is suitable for the low-frequency analysis. It is based on an electrostatic approach. The other program is based on an electrodynamic approach and it is tailored for microwave frequencies. In measurements, we use impedance meters and network analyzers to obtain the input impedance of a chamber with a sample. Thereafter, we implement our software for the electromagnetic modeling to extract the relative permittivity of the measured sample. As examples of verification of our method, we present here results for the relative permittivities of two sets of samples whose sizes are on the extreme limits of the method. The first set comprises poly (vinylidene fluoride) and mechanically activated ZnO nanoparticle composite films, whose relative permittivities are around 1.8. The second set comprises large, high-density samples of spinel (aluminum magnesium oxide) ceramics, sintered under various conditions. The measured relative permittivities of these samples are around 7.5. In all cases, good agreement with other available data has been obtained.", publisher = "Belgrade : Innovation Center of Faculty of Mechanical Engineering", journal = "Programme and The Book of Abstracts / International Conference of Experimental and Numerical Investigations and New Technologies - CNN TECH 2021,29 June - 02 July 2021, Zlatibor, Serbia", title = "Measurement of dielectric permitivity using coaxial chambers and electromagnetic-modeling software", pages = "82-82", url = "https://hdl.handle.net/21.15107/rcub_dais_12351" }
Obradović, N., Peleš, A., Olćan, D., Fahrenholtz, W. G., Đorđević, A.,& Pavlović, V. B.. (2021). Measurement of dielectric permitivity using coaxial chambers and electromagnetic-modeling software. in Programme and The Book of Abstracts / International Conference of Experimental and Numerical Investigations and New Technologies - CNN TECH 2021,29 June - 02 July 2021, Zlatibor, Serbia Belgrade : Innovation Center of Faculty of Mechanical Engineering., 82-82. https://hdl.handle.net/21.15107/rcub_dais_12351
Obradović N, Peleš A, Olćan D, Fahrenholtz WG, Đorđević A, Pavlović VB. Measurement of dielectric permitivity using coaxial chambers and electromagnetic-modeling software. in Programme and The Book of Abstracts / International Conference of Experimental and Numerical Investigations and New Technologies - CNN TECH 2021,29 June - 02 July 2021, Zlatibor, Serbia. 2021;:82-82. https://hdl.handle.net/21.15107/rcub_dais_12351 .
Obradović, Nina, Peleš, Adriana, Olćan, Dragan, Fahrenholtz, William G., Đorđević, Antonije, Pavlović, Vladimir B., "Measurement of dielectric permitivity using coaxial chambers and electromagnetic-modeling software" in Programme and The Book of Abstracts / International Conference of Experimental and Numerical Investigations and New Technologies - CNN TECH 2021,29 June - 02 July 2021, Zlatibor, Serbia (2021):82-82, https://hdl.handle.net/21.15107/rcub_dais_12351 .