Effects of synthesis parameters on structure and properties of the ceramic/polymer films based on bacterial cellulose
Authors
Sknepnek, AleksandraFilipović, Suzana

Masković, Pavle
Mirković, Miljana

Miletić, Dunja
Nikšić, Miomir
Pavlović, Vladimir B.

Conference object (Published version)
Metadata
Show full item recordAbstract
Cellulose, as the main constituent of plants, is the most common natural material that is widely used. Bacterial cellulose (BC) is a polymer of β-1,4-glucan chains, extracellularly attached to bacterial cells. It possesses the same structure as plant cellulose but its application has many advantages. BC has tinner threads, better crystallinity, mechanical strength and higher purity. By the means of micro- and nano-pores in the structure, it is possible to retain nano particles and enhance the application of obtained nanostructures. BC lacks antibacterial and antioxidative activity, conductivity and magnetic properties, which lowers the possibility of its application in biomedicine and electronics. To overcome previously mentioned deficiency, it is possible to apply bioactive polymers, nanomaterials or solid particles into the structure. High biocidal potential of TiO2 originates from its photocatalytic properties, and the generation of reactive oxygen species (ROS). At the first site o...f action, they cause cell membrane damage and afterwards, they attack intracellular components causing cell death. Hydroxyapatite (HAp) is capable to act synergistically with TiO2 and to accelerate its efficiency. Having in mind all characteristics of previously mentioned components, we have investigated the structure, morphology, mechanical properties and antimicrobial activity of advanced ceramics/polymer films. The influence of synthesis duration on BC structure, produced by Komagataeibacter xylinus species, was investigated. Thereafter, the possibility of TiO2/HAp ceramic nanocomposite application in BC was examined. The developed structures were analyzed by SEM and EDS analyzes, as well as XRD and FTIR spectroscopy. Mechanical properties were investigated as well.
Keywords:
bacterial cellulose / TiO2 / hydroxyapatite / antimicrobial activity / acetic acid bacteriaSource:
Programme and The Book of Abstracts / International Conference of Experimental and Numerical Investigations and New Technologies - CNN TECH 2021,29 June - 02 July 2021, Zlatibor, Serbia, 2021, 78-78Publisher:
- Belgrade : Innovation Center of Faculty of Mechanical Engineering
Funding / projects:
- Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200116 (University of Belgrade, Faculty of Agriculture) (RS-200116)
- Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200175 (Institute of Technical Sciences of SASA, Belgrade) (RS-200175)
- Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200017 (University of Belgrade, Institute of Nuclear Sciences 'Vinča', Belgrade-Vinča) (RS-200017)
Institution/Community
Институт техничких наука САНУ / Institute of Technical Sciences of SASATY - CONF AU - Sknepnek, Aleksandra AU - Filipović, Suzana AU - Masković, Pavle AU - Mirković, Miljana AU - Miletić, Dunja AU - Nikšić, Miomir AU - Pavlović, Vladimir B. PY - 2021 UR - https://dais.sanu.ac.rs/123456789/12348 AB - Cellulose, as the main constituent of plants, is the most common natural material that is widely used. Bacterial cellulose (BC) is a polymer of β-1,4-glucan chains, extracellularly attached to bacterial cells. It possesses the same structure as plant cellulose but its application has many advantages. BC has tinner threads, better crystallinity, mechanical strength and higher purity. By the means of micro- and nano-pores in the structure, it is possible to retain nano particles and enhance the application of obtained nanostructures. BC lacks antibacterial and antioxidative activity, conductivity and magnetic properties, which lowers the possibility of its application in biomedicine and electronics. To overcome previously mentioned deficiency, it is possible to apply bioactive polymers, nanomaterials or solid particles into the structure. High biocidal potential of TiO2 originates from its photocatalytic properties, and the generation of reactive oxygen species (ROS). At the first site of action, they cause cell membrane damage and afterwards, they attack intracellular components causing cell death. Hydroxyapatite (HAp) is capable to act synergistically with TiO2 and to accelerate its efficiency. Having in mind all characteristics of previously mentioned components, we have investigated the structure, morphology, mechanical properties and antimicrobial activity of advanced ceramics/polymer films. The influence of synthesis duration on BC structure, produced by Komagataeibacter xylinus species, was investigated. Thereafter, the possibility of TiO2/HAp ceramic nanocomposite application in BC was examined. The developed structures were analyzed by SEM and EDS analyzes, as well as XRD and FTIR spectroscopy. Mechanical properties were investigated as well. PB - Belgrade : Innovation Center of Faculty of Mechanical Engineering C3 - Programme and The Book of Abstracts / International Conference of Experimental and Numerical Investigations and New Technologies - CNN TECH 2021,29 June - 02 July 2021, Zlatibor, Serbia T1 - Effects of synthesis parameters on structure and properties of the ceramic/polymer films based on bacterial cellulose SP - 78 EP - 78 UR - https://hdl.handle.net/21.15107/rcub_dais_12348 ER -
@conference{ author = "Sknepnek, Aleksandra and Filipović, Suzana and Masković, Pavle and Mirković, Miljana and Miletić, Dunja and Nikšić, Miomir and Pavlović, Vladimir B.", year = "2021", abstract = "Cellulose, as the main constituent of plants, is the most common natural material that is widely used. Bacterial cellulose (BC) is a polymer of β-1,4-glucan chains, extracellularly attached to bacterial cells. It possesses the same structure as plant cellulose but its application has many advantages. BC has tinner threads, better crystallinity, mechanical strength and higher purity. By the means of micro- and nano-pores in the structure, it is possible to retain nano particles and enhance the application of obtained nanostructures. BC lacks antibacterial and antioxidative activity, conductivity and magnetic properties, which lowers the possibility of its application in biomedicine and electronics. To overcome previously mentioned deficiency, it is possible to apply bioactive polymers, nanomaterials or solid particles into the structure. High biocidal potential of TiO2 originates from its photocatalytic properties, and the generation of reactive oxygen species (ROS). At the first site of action, they cause cell membrane damage and afterwards, they attack intracellular components causing cell death. Hydroxyapatite (HAp) is capable to act synergistically with TiO2 and to accelerate its efficiency. Having in mind all characteristics of previously mentioned components, we have investigated the structure, morphology, mechanical properties and antimicrobial activity of advanced ceramics/polymer films. The influence of synthesis duration on BC structure, produced by Komagataeibacter xylinus species, was investigated. Thereafter, the possibility of TiO2/HAp ceramic nanocomposite application in BC was examined. The developed structures were analyzed by SEM and EDS analyzes, as well as XRD and FTIR spectroscopy. Mechanical properties were investigated as well.", publisher = "Belgrade : Innovation Center of Faculty of Mechanical Engineering", journal = "Programme and The Book of Abstracts / International Conference of Experimental and Numerical Investigations and New Technologies - CNN TECH 2021,29 June - 02 July 2021, Zlatibor, Serbia", title = "Effects of synthesis parameters on structure and properties of the ceramic/polymer films based on bacterial cellulose", pages = "78-78", url = "https://hdl.handle.net/21.15107/rcub_dais_12348" }
Sknepnek, A., Filipović, S., Masković, P., Mirković, M., Miletić, D., Nikšić, M.,& Pavlović, V. B.. (2021). Effects of synthesis parameters on structure and properties of the ceramic/polymer films based on bacterial cellulose. in Programme and The Book of Abstracts / International Conference of Experimental and Numerical Investigations and New Technologies - CNN TECH 2021,29 June - 02 July 2021, Zlatibor, Serbia Belgrade : Innovation Center of Faculty of Mechanical Engineering., 78-78. https://hdl.handle.net/21.15107/rcub_dais_12348
Sknepnek A, Filipović S, Masković P, Mirković M, Miletić D, Nikšić M, Pavlović VB. Effects of synthesis parameters on structure and properties of the ceramic/polymer films based on bacterial cellulose. in Programme and The Book of Abstracts / International Conference of Experimental and Numerical Investigations and New Technologies - CNN TECH 2021,29 June - 02 July 2021, Zlatibor, Serbia. 2021;:78-78. https://hdl.handle.net/21.15107/rcub_dais_12348 .
Sknepnek, Aleksandra, Filipović, Suzana, Masković, Pavle, Mirković, Miljana, Miletić, Dunja, Nikšić, Miomir, Pavlović, Vladimir B., "Effects of synthesis parameters on structure and properties of the ceramic/polymer films based on bacterial cellulose" in Programme and The Book of Abstracts / International Conference of Experimental and Numerical Investigations and New Technologies - CNN TECH 2021,29 June - 02 July 2021, Zlatibor, Serbia (2021):78-78, https://hdl.handle.net/21.15107/rcub_dais_12348 .