Phase morphological and antimicrobial properties of HAp-TiO2 nanomaterials obtained by different synthesis route
Conference object (Published version)
Metadata
Show full item recordAbstract
Due to the growing number of people infected with the new corona virus in the world, there is an increase in bacterial infections, which weakens the immunity. New knowledge about simple and low cost synthesis methods of materials with good structural and antimicrobial properties are of great importance nowadays. Combination of bio ceramic Hydroxyapatite material with good biocompatible characteristics and Titanium dioxide material with good degradation properties of organic molecules when combine together has ability to absorb and decompose the bacteria. Hydroxyapatite/titanium dioxide nanomaterials have been prepared by tree different synthesis route. The morphology and semi quantitative chemical analysis were characterized by scanning electron microscopy with energy dispersive X-ray analysis (SEM-EDX). Phase and structural characterization of obtained materials were determined using X-ray powder diffraction method (XRD). The crystallite sizes of the obtained materials were evaluated ...in the average range from 8 nm to 15 nm. Due to phase analysis by XRD characterization the peak shows presence of anatase phase with hydroxyapatite. Based on XRD peaks positions the hexagonal hydroxyapatite phases are formed in every synthesis route with TiO2 anatase phase. The microstructural studies confirmed that the nanosized HAp coated in a different way with TiO2 depending on a synthesis route. EDX analysis confirmed presence of Ti, Ca, P, O in obtained materials. The IR spectroscopy confirmed vibrational bands characteristic for HAp and titanium with anatase phase. The investigated materials show satisfactory antimicrobial properties.
Keywords:
hydroxyapatite / TiO2 / nanomaterials / antimicrobial propertiesSource:
Programme and The Book of Abstracts / International Conference of Experimental and Numerical Investigations and New Technologies - CNN TECH 2021,29 June - 02 July 2021, Zlatibor, Serbia, 2021, 14-14Publisher:
- Belgrade : Innovation Center of Faculty of Mechanical Engineering
Funding / projects:
- Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200017 (University of Belgrade, Institute of Nuclear Sciences 'Vinča', Belgrade-Vinča) (RS-200017)
- Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200175 (Institute of Technical Sciences of SASA, Belgrade) (RS-200175)
Institution/Community
Институт техничких наука САНУ / Institute of Technical Sciences of SASATY - CONF AU - Mirković, Miljana AU - Filipović, Suzana AU - Masković, Pavle AU - Pavlović, Vladimir B. PY - 2021 UR - https://dais.sanu.ac.rs/123456789/12346 AB - Due to the growing number of people infected with the new corona virus in the world, there is an increase in bacterial infections, which weakens the immunity. New knowledge about simple and low cost synthesis methods of materials with good structural and antimicrobial properties are of great importance nowadays. Combination of bio ceramic Hydroxyapatite material with good biocompatible characteristics and Titanium dioxide material with good degradation properties of organic molecules when combine together has ability to absorb and decompose the bacteria. Hydroxyapatite/titanium dioxide nanomaterials have been prepared by tree different synthesis route. The morphology and semi quantitative chemical analysis were characterized by scanning electron microscopy with energy dispersive X-ray analysis (SEM-EDX). Phase and structural characterization of obtained materials were determined using X-ray powder diffraction method (XRD). The crystallite sizes of the obtained materials were evaluated in the average range from 8 nm to 15 nm. Due to phase analysis by XRD characterization the peak shows presence of anatase phase with hydroxyapatite. Based on XRD peaks positions the hexagonal hydroxyapatite phases are formed in every synthesis route with TiO2 anatase phase. The microstructural studies confirmed that the nanosized HAp coated in a different way with TiO2 depending on a synthesis route. EDX analysis confirmed presence of Ti, Ca, P, O in obtained materials. The IR spectroscopy confirmed vibrational bands characteristic for HAp and titanium with anatase phase. The investigated materials show satisfactory antimicrobial properties. PB - Belgrade : Innovation Center of Faculty of Mechanical Engineering C3 - Programme and The Book of Abstracts / International Conference of Experimental and Numerical Investigations and New Technologies - CNN TECH 2021,29 June - 02 July 2021, Zlatibor, Serbia T1 - Phase morphological and antimicrobial properties of HAp-TiO2 nanomaterials obtained by different synthesis route SP - 14 EP - 14 UR - https://hdl.handle.net/21.15107/rcub_dais_12346 ER -
@conference{ author = "Mirković, Miljana and Filipović, Suzana and Masković, Pavle and Pavlović, Vladimir B.", year = "2021", abstract = "Due to the growing number of people infected with the new corona virus in the world, there is an increase in bacterial infections, which weakens the immunity. New knowledge about simple and low cost synthesis methods of materials with good structural and antimicrobial properties are of great importance nowadays. Combination of bio ceramic Hydroxyapatite material with good biocompatible characteristics and Titanium dioxide material with good degradation properties of organic molecules when combine together has ability to absorb and decompose the bacteria. Hydroxyapatite/titanium dioxide nanomaterials have been prepared by tree different synthesis route. The morphology and semi quantitative chemical analysis were characterized by scanning electron microscopy with energy dispersive X-ray analysis (SEM-EDX). Phase and structural characterization of obtained materials were determined using X-ray powder diffraction method (XRD). The crystallite sizes of the obtained materials were evaluated in the average range from 8 nm to 15 nm. Due to phase analysis by XRD characterization the peak shows presence of anatase phase with hydroxyapatite. Based on XRD peaks positions the hexagonal hydroxyapatite phases are formed in every synthesis route with TiO2 anatase phase. The microstructural studies confirmed that the nanosized HAp coated in a different way with TiO2 depending on a synthesis route. EDX analysis confirmed presence of Ti, Ca, P, O in obtained materials. The IR spectroscopy confirmed vibrational bands characteristic for HAp and titanium with anatase phase. The investigated materials show satisfactory antimicrobial properties.", publisher = "Belgrade : Innovation Center of Faculty of Mechanical Engineering", journal = "Programme and The Book of Abstracts / International Conference of Experimental and Numerical Investigations and New Technologies - CNN TECH 2021,29 June - 02 July 2021, Zlatibor, Serbia", title = "Phase morphological and antimicrobial properties of HAp-TiO2 nanomaterials obtained by different synthesis route", pages = "14-14", url = "https://hdl.handle.net/21.15107/rcub_dais_12346" }
Mirković, M., Filipović, S., Masković, P.,& Pavlović, V. B.. (2021). Phase morphological and antimicrobial properties of HAp-TiO2 nanomaterials obtained by different synthesis route. in Programme and The Book of Abstracts / International Conference of Experimental and Numerical Investigations and New Technologies - CNN TECH 2021,29 June - 02 July 2021, Zlatibor, Serbia Belgrade : Innovation Center of Faculty of Mechanical Engineering., 14-14. https://hdl.handle.net/21.15107/rcub_dais_12346
Mirković M, Filipović S, Masković P, Pavlović VB. Phase morphological and antimicrobial properties of HAp-TiO2 nanomaterials obtained by different synthesis route. in Programme and The Book of Abstracts / International Conference of Experimental and Numerical Investigations and New Technologies - CNN TECH 2021,29 June - 02 July 2021, Zlatibor, Serbia. 2021;:14-14. https://hdl.handle.net/21.15107/rcub_dais_12346 .
Mirković, Miljana, Filipović, Suzana, Masković, Pavle, Pavlović, Vladimir B., "Phase morphological and antimicrobial properties of HAp-TiO2 nanomaterials obtained by different synthesis route" in Programme and The Book of Abstracts / International Conference of Experimental and Numerical Investigations and New Technologies - CNN TECH 2021,29 June - 02 July 2021, Zlatibor, Serbia (2021):14-14, https://hdl.handle.net/21.15107/rcub_dais_12346 .