DAIS - Digital Archive of the Serbian Academy of Sciences and Arts
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   DAIS
  • Институт техничких наука САНУ / Institute of Technical Sciences of SASA
  • ИТН САНУ Истраживачки подаци / ITS SASA Research data
  • View Item
  •   DAIS
  • Институт техничких наука САНУ / Institute of Technical Sciences of SASA
  • ИТН САНУ Истраживачки подаци / ITS SASA Research data
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Supporting information for Ušjak, Dušan, Dinić, Miroslav, Novović, Katarina, Ivković, Branka, Filipović, Nenad, Stevanović, Magdalena, Milenković, Marina T., "Methoxy‐Substituted Hydroxychalcone Reduces Biofilm Production, Adhesion and Surface Motility of Acinetobacter baumannii by Inhibiting ompA Gene Expression" in Chemistry & Biodiversity, 18, no. 1 (2021):e2000786, https://doi.org/10.1002/cbdv.202000786

Thumbnail
2021
cbdv202000786-sup-0001-misc_information.pdf (1.417Mb)
Authors
Dinić, Miroslav
Novović, Katarina
Ivković, Branka
Filipović, Nenad
Stevanović, Magdalena
Milenković, Marina
Dataset (Published version)
Metadata
Show full item record
Abstract
An increasing lack of available therapeutic options against Acinetobacter baumannii urged researchers to seek alternative ways to fight this extremely resistant nosocomial pathogen. Targeting its virulence appears to be a promising strategy, as it offers considerably reduced selection of resistant mutants. In this study, we tested antibiofilm potential of four synthetic chalcone derivatives against A. baumannii. Compound that showed the greatest activity was selected for further evaluation of its antivirulence properties. Real-time PCR was used to evaluate mRNA expression of biofilm-associated virulence factor genes (ompA, bap, abaI) in treated A. baumannii strains. Also, we examined virulence properties related to the expression of these genes, such as fibronectin- and collagen-mediated adhesion, surface motility, and quorum-sensing activity. The results revealed that the expression of all tested genes is downregulated together with the reduction of adhesion and motility. The conclusi...on is that 2′-hydroxy-2-methoxychalcone exhibits antivirulence activity against A. baumannii by inhibiting the expression of ompA and bap genes, which is reflected in reduced biofilm formation, adhesion, and surface motility.

Keywords:
gene expression / Acinetobacter baumannii / chalcones / polymerase chain reaction / virulence factors
Source:
Chemistry and Biodiversity, 2021, 18, 1
Publisher:
  • Wiley-VCH Verlag
Note:
  • Conference poster: https://hdl.handle.net/21.15107/rcub_dais_10086
  • Supporting information for the article: Ušjak, Dušan, Dinić, Miroslav, Novović, Katarina, Ivković, Branka, Filipović, Nenad, Stevanović, Magdalena, Milenković, Marina T., "Methoxy‐Substituted Hydroxychalcone Reduces Biofilm Production, Adhesion and Surface Motility of Acinetobacter baumannii by Inhibiting ompA Gene Expression" in Chemistry & Biodiversity, 18, no. 1 (2021):e2000786, https://doi.org/10.1002/cbdv.202000786
  • Related to the peer-reviewed manuscript: https://hdl.handle.net/21.15107/rcub_dais_10034
  • Related to the published version: https://hdl.handle.net/21.15107/rcub_dais_111878]
Related info:
  • Referenced by
    http://dx.doi.org/10.1002/cbdv.202000786
  • Referenced by
    https://hdl.handle.net/21.15107/rcub_dais_10034
  • Referenced by
    https://hdl.handle.net/21.15107/rcub_dais_11878

ISSN: 1612-1872

[ Google Scholar ]
Handle
https://hdl.handle.net/21.15107/rcub_dais_11879
URI
https://dais.sanu.ac.rs/123456789/11879
Collections
  • ИТН САНУ Истраживачки подаци / ITS SASA Research data
Institution/Community
Институт техничких наука САНУ / Institute of Technical Sciences of SASA
TY  - DATA
AU  - Dinić, Miroslav
AU  - Novović, Katarina
AU  - Ivković, Branka
AU  - Filipović, Nenad
AU  - Stevanović, Magdalena
AU  - Milenković, Marina
PY  - 2021
UR  - https://dais.sanu.ac.rs/123456789/11879
AB  - An increasing lack of available therapeutic options against Acinetobacter baumannii urged researchers to seek alternative ways to fight this extremely resistant nosocomial pathogen. Targeting its virulence appears to be a promising strategy, as it offers considerably reduced selection of resistant mutants. In this study, we tested antibiofilm potential of four synthetic chalcone derivatives against A. baumannii. Compound that showed the greatest activity was selected for further evaluation of its antivirulence properties. Real-time PCR was used to evaluate mRNA expression of biofilm-associated virulence factor genes (ompA, bap, abaI) in treated A. baumannii strains. Also, we examined virulence properties related to the expression of these genes, such as fibronectin- and collagen-mediated adhesion, surface motility, and quorum-sensing activity. The results revealed that the expression of all tested genes is downregulated together with the reduction of adhesion and motility. The conclusion is that 2′-hydroxy-2-methoxychalcone exhibits antivirulence activity against A. baumannii by inhibiting the expression of ompA and bap genes, which is reflected in reduced biofilm formation, adhesion, and surface motility.
PB  - Wiley-VCH Verlag
T2  - Chemistry and Biodiversity
T1  - Supporting information for Ušjak, Dušan, Dinić, Miroslav, Novović, Katarina, Ivković, Branka, Filipović, Nenad, Stevanović, Magdalena, Milenković, Marina T., "Methoxy‐Substituted Hydroxychalcone Reduces Biofilm Production, Adhesion and Surface Motility of                    Acinetobacter baumannii                    by Inhibiting ompA Gene Expression" in Chemistry & Biodiversity, 18, no. 1 (2021):e2000786, https://doi.org/10.1002/cbdv.202000786
VL  - 18
IS  - 1
UR  - https://hdl.handle.net/21.15107/rcub_dais_11879
ER  - 
@misc{
author = "Dinić, Miroslav and Novović, Katarina and Ivković, Branka and Filipović, Nenad and Stevanović, Magdalena and Milenković, Marina",
year = "2021",
abstract = "An increasing lack of available therapeutic options against Acinetobacter baumannii urged researchers to seek alternative ways to fight this extremely resistant nosocomial pathogen. Targeting its virulence appears to be a promising strategy, as it offers considerably reduced selection of resistant mutants. In this study, we tested antibiofilm potential of four synthetic chalcone derivatives against A. baumannii. Compound that showed the greatest activity was selected for further evaluation of its antivirulence properties. Real-time PCR was used to evaluate mRNA expression of biofilm-associated virulence factor genes (ompA, bap, abaI) in treated A. baumannii strains. Also, we examined virulence properties related to the expression of these genes, such as fibronectin- and collagen-mediated adhesion, surface motility, and quorum-sensing activity. The results revealed that the expression of all tested genes is downregulated together with the reduction of adhesion and motility. The conclusion is that 2′-hydroxy-2-methoxychalcone exhibits antivirulence activity against A. baumannii by inhibiting the expression of ompA and bap genes, which is reflected in reduced biofilm formation, adhesion, and surface motility.",
publisher = "Wiley-VCH Verlag",
journal = "Chemistry and Biodiversity",
title = "Supporting information for Ušjak, Dušan, Dinić, Miroslav, Novović, Katarina, Ivković, Branka, Filipović, Nenad, Stevanović, Magdalena, Milenković, Marina T., "Methoxy‐Substituted Hydroxychalcone Reduces Biofilm Production, Adhesion and Surface Motility of                    Acinetobacter baumannii                    by Inhibiting ompA Gene Expression" in Chemistry & Biodiversity, 18, no. 1 (2021):e2000786, https://doi.org/10.1002/cbdv.202000786",
volume = "18",
number = "1",
url = "https://hdl.handle.net/21.15107/rcub_dais_11879"
}
Dinić, M., Novović, K., Ivković, B., Filipović, N., Stevanović, M.,& Milenković, M.. (2021). Supporting information for Ušjak, Dušan, Dinić, Miroslav, Novović, Katarina, Ivković, Branka, Filipović, Nenad, Stevanović, Magdalena, Milenković, Marina T., "Methoxy‐Substituted Hydroxychalcone Reduces Biofilm Production, Adhesion and Surface Motility of                    Acinetobacter baumannii                    by Inhibiting ompA Gene Expression" in Chemistry & Biodiversity, 18, no. 1 (2021):e2000786, https://doi.org/10.1002/cbdv.202000786. in Chemistry and Biodiversity
Wiley-VCH Verlag., 18(1).
https://hdl.handle.net/21.15107/rcub_dais_11879
Dinić M, Novović K, Ivković B, Filipović N, Stevanović M, Milenković M. Supporting information for Ušjak, Dušan, Dinić, Miroslav, Novović, Katarina, Ivković, Branka, Filipović, Nenad, Stevanović, Magdalena, Milenković, Marina T., "Methoxy‐Substituted Hydroxychalcone Reduces Biofilm Production, Adhesion and Surface Motility of                    Acinetobacter baumannii                    by Inhibiting ompA Gene Expression" in Chemistry & Biodiversity, 18, no. 1 (2021):e2000786, https://doi.org/10.1002/cbdv.202000786. in Chemistry and Biodiversity. 2021;18(1).
https://hdl.handle.net/21.15107/rcub_dais_11879 .
Dinić, Miroslav, Novović, Katarina, Ivković, Branka, Filipović, Nenad, Stevanović, Magdalena, Milenković, Marina, "Supporting information for Ušjak, Dušan, Dinić, Miroslav, Novović, Katarina, Ivković, Branka, Filipović, Nenad, Stevanović, Magdalena, Milenković, Marina T., "Methoxy‐Substituted Hydroxychalcone Reduces Biofilm Production, Adhesion and Surface Motility of                    Acinetobacter baumannii                    by Inhibiting ompA Gene Expression" in Chemistry & Biodiversity, 18, no. 1 (2021):e2000786, https://doi.org/10.1002/cbdv.202000786" in Chemistry and Biodiversity, 18, no. 1 (2021),
https://hdl.handle.net/21.15107/rcub_dais_11879 .

DSpace software copyright © 2002-2015  DuraSpace
About DAIS - Digital Archive of the Serbian Academy of Sciences and Arts | Send Feedback

CoreTrustSealre3dataOpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About DAIS - Digital Archive of the Serbian Academy of Sciences and Arts | Send Feedback

CoreTrustSealre3dataOpenAIRERCUB