DAIS - Digital Archive of the Serbian Academy of Sciences and Arts
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   DAIS
  • Институт техничких наука САНУ / Institute of Technical Sciences of SASA
  • ИТН САНУ - Општа колекција / ITS SASA - General collection
  • View Item
  •   DAIS
  • Институт техничких наука САНУ / Institute of Technical Sciences of SASA
  • ИТН САНУ - Општа колекција / ITS SASA - General collection
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Thermogravimetric insight in the reduction of xCuO – (1-x)MoO3 oxide system (0.1 ≤ x ≤ 0.9) by hydrogen

Authorized Users Only
2021
Authors
Jelić, Dijana
Zeljković, Saša
Jugović, Dragana
Mentus, Slavko
Article (Published version)
Metadata
Show full item record
Abstract
The oxide mixtures xCuO-(1-x) MoO3 were synthesized by gel-combustion procedure. The existence of phase mixture CuO + Cu3Mo2O9 and MoO3 + CuMoO4 in CuO-rich and MoO3 -rich composition region, respectively, were evidenced. The constant heating rate thermogravimetry in hydrogen atmosphere revealed that the reduction reactions proceed within the two clearly separated temperature regions. On the basis of mass changes, the mechanism of reduction processes was discussed. The measurements revealed considerable inhibition of CuO reduction by MoO3, and huge acceleration of MoO3 → MoO2 reduction step by copper. The particularities found in this system were commented in relation to our similar studies in NiO-MoO3 and CuO-WO3 systems. For particular composition, x = 0.5, existing preferably in form of a-CuMoO4, kinetic parameters of reduction were determined. The composition of oxide mixture influenced the particle size and morphology of resulting metallic Cu-Mo composites.
Keywords:
copper oxide / Cu-Mo composites / hydrogen / thermogravimetry / molybdenum oxide
Source:
International Journal of Refractory Metals and Hard Materials, 2021, 96, 105480-
Publisher:
  • Elsevier BV
Funding / projects:
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200146 (University of Belgrade, Faculty of Physical Chemistry) (RS-200146)
  • Serbian Academy of Sciences and Arts, Project F-190
  • Ministry for Scientific and Technological Development, Higher Education and Information Society of Republic of Srpska, project No. 19.032/961-78/19
Note:
  • Peer-reviewed manuscript: https://hdl.handle.net/21.15107/rcub_dais_10534
Related info:
  • Version of
    https://hdl.handle.net/21.15107/rcub_dais_10534

DOI: 10.1016/j.ijrmhm.2021.105480

ISSN: 0263-4368

WoS: 000632163300001

Scopus: 2-s2.0-85100556112
[ Google Scholar ]
Handle
https://hdl.handle.net/21.15107/rcub_dais_10533
URI
https://dais.sanu.ac.rs/123456789/10533
Collections
  • ИТН САНУ - Општа колекција / ITS SASA - General collection
Institution/Community
Институт техничких наука САНУ / Institute of Technical Sciences of SASA
TY  - JOUR
AU  - Jelić, Dijana
AU  - Zeljković, Saša
AU  - Jugović, Dragana
AU  - Mentus, Slavko
PY  - 2021
UR  - https://dais.sanu.ac.rs/123456789/10533
AB  - The oxide mixtures xCuO-(1-x) MoO3 were synthesized by gel-combustion procedure. The existence of phase mixture CuO + Cu3Mo2O9 and MoO3 + CuMoO4 in CuO-rich and MoO3 -rich composition region, respectively, were evidenced. The constant heating rate thermogravimetry in hydrogen atmosphere revealed that the reduction reactions proceed within the two clearly separated temperature regions. On the basis of mass changes, the mechanism of reduction processes was discussed. The measurements revealed considerable inhibition of CuO reduction by MoO3, and huge acceleration of MoO3 → MoO2 reduction step by copper. The particularities found in this system were commented in relation to our similar studies in NiO-MoO3 and CuO-WO3 systems. For particular composition, x = 0.5, existing preferably in form of a-CuMoO4, kinetic parameters of reduction were determined. The composition of oxide mixture influenced the particle size and morphology of resulting metallic Cu-Mo composites.
PB  - Elsevier BV
T2  - International Journal of Refractory Metals and Hard Materials
T1  - Thermogravimetric insight in the reduction of xCuO – (1-x)MoO3 oxide system (0.1 ≤ x ≤ 0.9) by hydrogen
SP  - 105480
VL  - 96
DO  - 10.1016/j.ijrmhm.2021.105480
UR  - https://hdl.handle.net/21.15107/rcub_dais_10533
ER  - 
@article{
author = "Jelić, Dijana and Zeljković, Saša and Jugović, Dragana and Mentus, Slavko",
year = "2021",
abstract = "The oxide mixtures xCuO-(1-x) MoO3 were synthesized by gel-combustion procedure. The existence of phase mixture CuO + Cu3Mo2O9 and MoO3 + CuMoO4 in CuO-rich and MoO3 -rich composition region, respectively, were evidenced. The constant heating rate thermogravimetry in hydrogen atmosphere revealed that the reduction reactions proceed within the two clearly separated temperature regions. On the basis of mass changes, the mechanism of reduction processes was discussed. The measurements revealed considerable inhibition of CuO reduction by MoO3, and huge acceleration of MoO3 → MoO2 reduction step by copper. The particularities found in this system were commented in relation to our similar studies in NiO-MoO3 and CuO-WO3 systems. For particular composition, x = 0.5, existing preferably in form of a-CuMoO4, kinetic parameters of reduction were determined. The composition of oxide mixture influenced the particle size and morphology of resulting metallic Cu-Mo composites.",
publisher = "Elsevier BV",
journal = "International Journal of Refractory Metals and Hard Materials",
title = "Thermogravimetric insight in the reduction of xCuO – (1-x)MoO3 oxide system (0.1 ≤ x ≤ 0.9) by hydrogen",
pages = "105480",
volume = "96",
doi = "10.1016/j.ijrmhm.2021.105480",
url = "https://hdl.handle.net/21.15107/rcub_dais_10533"
}
Jelić, D., Zeljković, S., Jugović, D.,& Mentus, S.. (2021). Thermogravimetric insight in the reduction of xCuO – (1-x)MoO3 oxide system (0.1 ≤ x ≤ 0.9) by hydrogen. in International Journal of Refractory Metals and Hard Materials
Elsevier BV., 96, 105480.
https://doi.org/10.1016/j.ijrmhm.2021.105480
https://hdl.handle.net/21.15107/rcub_dais_10533
Jelić D, Zeljković S, Jugović D, Mentus S. Thermogravimetric insight in the reduction of xCuO – (1-x)MoO3 oxide system (0.1 ≤ x ≤ 0.9) by hydrogen. in International Journal of Refractory Metals and Hard Materials. 2021;96:105480.
doi:10.1016/j.ijrmhm.2021.105480
https://hdl.handle.net/21.15107/rcub_dais_10533 .
Jelić, Dijana, Zeljković, Saša, Jugović, Dragana, Mentus, Slavko, "Thermogravimetric insight in the reduction of xCuO – (1-x)MoO3 oxide system (0.1 ≤ x ≤ 0.9) by hydrogen" in International Journal of Refractory Metals and Hard Materials, 96 (2021):105480,
https://doi.org/10.1016/j.ijrmhm.2021.105480 .,
https://hdl.handle.net/21.15107/rcub_dais_10533 .

DSpace software copyright © 2002-2015  DuraSpace
About DAIS - Digital Archive of the Serbian Academy of Sciences and Arts | Send Feedback

CoreTrustSealre3dataOpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About DAIS - Digital Archive of the Serbian Academy of Sciences and Arts | Send Feedback

CoreTrustSealre3dataOpenAIRERCUB