HAp:Co as tunable VIS-NIR reflective pigment

2020
Authors
Marković, Smilja
Stojanović, Zoran S.

Veselinović, Ljiljana

Simić, Danica
Samolov, Aleksandra
Stojković Simatović, Ivana

Conference object (Published version)
Metadata
Show full item recordAbstract
Radar-absorbent materials, used in stealth technology for defense aircrafts, vehicles, satellites, etc. from radar detection, are commonly based on graphite or semiconductive particles embedded in a polymer matrix. In this study, we employed Co2+ ion-substitution to improve Vis-NIR reflectivity of hydroxyapatite (Ca10(PO4)6(OH)2, HAP) powder. HAP:Co with nominally 5 at.% of Co was prepared with hydrothermal processing of a precipitate. Synthesized powder was characterized by XRD, Raman and ATR-FTIR spectroscopy, FE-SEM and TEM. Thermal stability of HAP:Co powder was examined by simultaneous TG-DTA analyzer. To modify its optical properties and obtain powders with a varietty of color tone, the HAP:Co powder was calcined at 800, 1000, and 1100 °C, in an air atmosphere, for 1 hour. Afterward, the calcined particles were used to prepare composites with poly(vinyl butyral), (PVB); the concentration range was 1 wt.% of the HAP:Co in PVB. The composite coatings, in the form of thin films on g...lass, were prepared by the solvent-casting technique, using ethanol as a fast evaporating solvent. Firstly, the HAP:Co particles were dispersed in ethanol, then PVB was added (Mowital B30H) and dissolved. To evaporate the solvent before spectrophotometric measurements, the coatings on glass were dried at room temperature for 72 hours. To comprehend optical properties of the coatings, diffuse reflection, transmission, and color coordinates were determined. We found that calcined HAP:Co particles have potential to be used in the formulation of coatings for camouflage protection.
Keywords:
hydroxyapatite / cobalt / coatings / Vis-NIR reflectivity / corrosionSource:
9th International Scientific Conference on Defensive Technologies : OTEH2020, Belgrade, Serbia, 15-16 October 2020, 2020, 475-480Publisher:
- Belgrade : Military Technical Institute
Funding / projects:
- Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200175 (Institute of Technical Sciences of SASA, Belgrade) (RS-200175)
- Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200146 (University of Belgrade, Faculty of Physical Chemistry) (RS-200146)
- Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200325 (Military Technical Institute - MTI, Belgrade) (RS-200325)
Institution/Community
Институт техничких наука САНУ / Institute of Technical Sciences of SASATY - CONF AU - Marković, Smilja AU - Stojanović, Zoran S. AU - Veselinović, Ljiljana AU - Simić, Danica AU - Samolov, Aleksandra AU - Stojković Simatović, Ivana PY - 2020 UR - http://www.vti.mod.gov.rs/oteh/elementi/rad/125.pdf UR - https://dais.sanu.ac.rs/123456789/10038 AB - Radar-absorbent materials, used in stealth technology for defense aircrafts, vehicles, satellites, etc. from radar detection, are commonly based on graphite or semiconductive particles embedded in a polymer matrix. In this study, we employed Co2+ ion-substitution to improve Vis-NIR reflectivity of hydroxyapatite (Ca10(PO4)6(OH)2, HAP) powder. HAP:Co with nominally 5 at.% of Co was prepared with hydrothermal processing of a precipitate. Synthesized powder was characterized by XRD, Raman and ATR-FTIR spectroscopy, FE-SEM and TEM. Thermal stability of HAP:Co powder was examined by simultaneous TG-DTA analyzer. To modify its optical properties and obtain powders with a varietty of color tone, the HAP:Co powder was calcined at 800, 1000, and 1100 °C, in an air atmosphere, for 1 hour. Afterward, the calcined particles were used to prepare composites with poly(vinyl butyral), (PVB); the concentration range was 1 wt.% of the HAP:Co in PVB. The composite coatings, in the form of thin films on glass, were prepared by the solvent-casting technique, using ethanol as a fast evaporating solvent. Firstly, the HAP:Co particles were dispersed in ethanol, then PVB was added (Mowital B30H) and dissolved. To evaporate the solvent before spectrophotometric measurements, the coatings on glass were dried at room temperature for 72 hours. To comprehend optical properties of the coatings, diffuse reflection, transmission, and color coordinates were determined. We found that calcined HAP:Co particles have potential to be used in the formulation of coatings for camouflage protection. PB - Belgrade : Military Technical Institute C3 - 9th International Scientific Conference on Defensive Technologies : OTEH2020, Belgrade, Serbia, 15-16 October 2020 T1 - HAp:Co as tunable VIS-NIR reflective pigment SP - 475 EP - 480 UR - https://hdl.handle.net/21.15107/rcub_dais_10038 ER -
@conference{ author = "Marković, Smilja and Stojanović, Zoran S. and Veselinović, Ljiljana and Simić, Danica and Samolov, Aleksandra and Stojković Simatović, Ivana", year = "2020", abstract = "Radar-absorbent materials, used in stealth technology for defense aircrafts, vehicles, satellites, etc. from radar detection, are commonly based on graphite or semiconductive particles embedded in a polymer matrix. In this study, we employed Co2+ ion-substitution to improve Vis-NIR reflectivity of hydroxyapatite (Ca10(PO4)6(OH)2, HAP) powder. HAP:Co with nominally 5 at.% of Co was prepared with hydrothermal processing of a precipitate. Synthesized powder was characterized by XRD, Raman and ATR-FTIR spectroscopy, FE-SEM and TEM. Thermal stability of HAP:Co powder was examined by simultaneous TG-DTA analyzer. To modify its optical properties and obtain powders with a varietty of color tone, the HAP:Co powder was calcined at 800, 1000, and 1100 °C, in an air atmosphere, for 1 hour. Afterward, the calcined particles were used to prepare composites with poly(vinyl butyral), (PVB); the concentration range was 1 wt.% of the HAP:Co in PVB. The composite coatings, in the form of thin films on glass, were prepared by the solvent-casting technique, using ethanol as a fast evaporating solvent. Firstly, the HAP:Co particles were dispersed in ethanol, then PVB was added (Mowital B30H) and dissolved. To evaporate the solvent before spectrophotometric measurements, the coatings on glass were dried at room temperature for 72 hours. To comprehend optical properties of the coatings, diffuse reflection, transmission, and color coordinates were determined. We found that calcined HAP:Co particles have potential to be used in the formulation of coatings for camouflage protection.", publisher = "Belgrade : Military Technical Institute", journal = "9th International Scientific Conference on Defensive Technologies : OTEH2020, Belgrade, Serbia, 15-16 October 2020", title = "HAp:Co as tunable VIS-NIR reflective pigment", pages = "475-480", url = "https://hdl.handle.net/21.15107/rcub_dais_10038" }
Marković, S., Stojanović, Z. S., Veselinović, L., Simić, D., Samolov, A.,& Stojković Simatović, I.. (2020). HAp:Co as tunable VIS-NIR reflective pigment. in 9th International Scientific Conference on Defensive Technologies : OTEH2020, Belgrade, Serbia, 15-16 October 2020 Belgrade : Military Technical Institute., 475-480. https://hdl.handle.net/21.15107/rcub_dais_10038
Marković S, Stojanović ZS, Veselinović L, Simić D, Samolov A, Stojković Simatović I. HAp:Co as tunable VIS-NIR reflective pigment. in 9th International Scientific Conference on Defensive Technologies : OTEH2020, Belgrade, Serbia, 15-16 October 2020. 2020;:475-480. https://hdl.handle.net/21.15107/rcub_dais_10038 .
Marković, Smilja, Stojanović, Zoran S., Veselinović, Ljiljana, Simić, Danica, Samolov, Aleksandra, Stojković Simatović, Ivana, "HAp:Co as tunable VIS-NIR reflective pigment" in 9th International Scientific Conference on Defensive Technologies : OTEH2020, Belgrade, Serbia, 15-16 October 2020 (2020):475-480, https://hdl.handle.net/21.15107/rcub_dais_10038 .