DAIS - Digital Archive of the Serbian Academy of Sciences and Arts
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   DAIS
  • Институт техничких наука САНУ / Institute of Technical Sciences of SASA
  • ИТН САНУ - Општа колекција / ITS SASA - General collection
  • View Item
  •   DAIS
  • Институт техничких наука САНУ / Institute of Technical Sciences of SASA
  • ИТН САНУ - Општа колекција / ITS SASA - General collection
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

From molecules to nanoparticles to functional materials

Thumbnail
2020
0352-51392000035I.pdf (7.389Mb)
Authors
Ignjatović, Nenad
Marković, Smilja
Jugović, Dragana
Uskoković, Vuk
Uskoković, Dragan
Article (Published version)
Metadata
Show full item record
Abstract
Functional nanomaterials have held a steady position at the frontier of materials science and engineering in the 21st century. “Molecular Designing of Nanoparticles with Controlled Morphological and Physicochemical Characteristics and Functional Materials Based on Them” was the title of the research project funded by the Ministry of Education, Science and Technological Development of the Republic of Serbia and performed between 2011 and 2019 in the interdisciplinary area of nanoscience and nanotechnologies. Research activities within this program were divided into five interrelated topics: 1) from molecules to nanoparticles; 2) advanced ceramics with improved functional properties; 3) electrode materials for lithium–ion batteries; 4) nano-calcium phosphate in preventive and regenerative medicine; 5) biodegradable microand nano-particles for the controlled delivery of medicaments. This report gives an insight into this bibliographically most impactful Serbian national project on nanotec...hnologies executed within the aforementioned nine-year cycle, 2011–2019, focusing here only on the results achieved in the past three years. The project provided an outstanding and internationally recognized contribution to synthesis, characterization and functional design of a number of materials systems, including pure and lanthanide–doped hydroxyapatite, zinc oxides, sodium cobaltates, lithium iron pyrophosphates, lithium iron silicates and a number of polymeric systems.

Keywords:
nanotechnology / lithium-ion batteries / nanomedicine / electrodes
Source:
Journal of the Serbian Chemical Society, 2020, 85, 11, 1383-1403
Publisher:
  • Belgrade : Serbian Chemical Society
Funding / projects:
  • Molecular designing of nanoparticles with controlled morphological and physicochemical characteristics and functional materials based on them (RS-45004)

DOI: 10.2298/JSC200426035I

ISSN: 0352-5139; 1820-7421

WoS: 000595578800001

[ Google Scholar ]
Handle
https://hdl.handle.net/21.15107/rcub_dais_10037
URI
https://dais.sanu.ac.rs/123456789/10037
Collections
  • ИТН САНУ - Општа колекција / ITS SASA - General collection
Institution/Community
Институт техничких наука САНУ / Institute of Technical Sciences of SASA
TY  - JOUR
AU  - Ignjatović, Nenad
AU  - Marković, Smilja
AU  - Jugović, Dragana
AU  - Uskoković, Vuk
AU  - Uskoković, Dragan
PY  - 2020
UR  - https://dais.sanu.ac.rs/123456789/10037
AB  - Functional nanomaterials have held a steady position at the frontier of materials science and engineering in the 21st century. “Molecular Designing of Nanoparticles with Controlled Morphological and Physicochemical Characteristics and Functional Materials Based on Them” was the title of the research project funded by the Ministry of Education, Science and Technological Development of the Republic of Serbia and performed between 2011 and 2019 in the interdisciplinary area of nanoscience and nanotechnologies. Research activities within this program were divided into five interrelated topics: 1) from molecules to nanoparticles; 2) advanced ceramics with improved functional properties; 3) electrode materials for lithium–ion batteries; 4) nano-calcium phosphate in preventive and regenerative medicine; 5) biodegradable microand nano-particles for the controlled delivery of medicaments. This report gives an insight into this bibliographically most impactful Serbian national project on nanotechnologies executed within the aforementioned nine-year cycle, 2011–2019, focusing here only on the results achieved in the past three years. The project provided an outstanding and internationally recognized contribution to synthesis, characterization and functional design of a number of materials systems, including pure and lanthanide–doped hydroxyapatite, zinc oxides, sodium cobaltates, lithium iron pyrophosphates, lithium iron silicates and a number of polymeric systems.
PB  - Belgrade : Serbian Chemical Society
T2  - Journal of the Serbian Chemical Society
T1  - From molecules to nanoparticles to functional materials
SP  - 1383
EP  - 1403
VL  - 85
IS  - 11
DO  - 10.2298/JSC200426035I
UR  - https://hdl.handle.net/21.15107/rcub_dais_10037
ER  - 
@article{
author = "Ignjatović, Nenad and Marković, Smilja and Jugović, Dragana and Uskoković, Vuk and Uskoković, Dragan",
year = "2020",
abstract = "Functional nanomaterials have held a steady position at the frontier of materials science and engineering in the 21st century. “Molecular Designing of Nanoparticles with Controlled Morphological and Physicochemical Characteristics and Functional Materials Based on Them” was the title of the research project funded by the Ministry of Education, Science and Technological Development of the Republic of Serbia and performed between 2011 and 2019 in the interdisciplinary area of nanoscience and nanotechnologies. Research activities within this program were divided into five interrelated topics: 1) from molecules to nanoparticles; 2) advanced ceramics with improved functional properties; 3) electrode materials for lithium–ion batteries; 4) nano-calcium phosphate in preventive and regenerative medicine; 5) biodegradable microand nano-particles for the controlled delivery of medicaments. This report gives an insight into this bibliographically most impactful Serbian national project on nanotechnologies executed within the aforementioned nine-year cycle, 2011–2019, focusing here only on the results achieved in the past three years. The project provided an outstanding and internationally recognized contribution to synthesis, characterization and functional design of a number of materials systems, including pure and lanthanide–doped hydroxyapatite, zinc oxides, sodium cobaltates, lithium iron pyrophosphates, lithium iron silicates and a number of polymeric systems.",
publisher = "Belgrade : Serbian Chemical Society",
journal = "Journal of the Serbian Chemical Society",
title = "From molecules to nanoparticles to functional materials",
pages = "1383-1403",
volume = "85",
number = "11",
doi = "10.2298/JSC200426035I",
url = "https://hdl.handle.net/21.15107/rcub_dais_10037"
}
Ignjatović, N., Marković, S., Jugović, D., Uskoković, V.,& Uskoković, D.. (2020). From molecules to nanoparticles to functional materials. in Journal of the Serbian Chemical Society
Belgrade : Serbian Chemical Society., 85(11), 1383-1403.
https://doi.org/10.2298/JSC200426035I
https://hdl.handle.net/21.15107/rcub_dais_10037
Ignjatović N, Marković S, Jugović D, Uskoković V, Uskoković D. From molecules to nanoparticles to functional materials. in Journal of the Serbian Chemical Society. 2020;85(11):1383-1403.
doi:10.2298/JSC200426035I
https://hdl.handle.net/21.15107/rcub_dais_10037 .
Ignjatović, Nenad, Marković, Smilja, Jugović, Dragana, Uskoković, Vuk, Uskoković, Dragan, "From molecules to nanoparticles to functional materials" in Journal of the Serbian Chemical Society, 85, no. 11 (2020):1383-1403,
https://doi.org/10.2298/JSC200426035I .,
https://hdl.handle.net/21.15107/rcub_dais_10037 .

DSpace software copyright © 2002-2015  DuraSpace
About DAIS - Digital Archive of the Serbian Academy of Sciences and Arts | Send Feedback

re3dataOpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About DAIS - Digital Archive of the Serbian Academy of Sciences and Arts | Send Feedback

re3dataOpenAIRERCUB