The NaxMnO2 materials prepared by a glycine-nitrate method as advanced cathode materials for aqueous sodium-ion rechargeable batteries
Authorized Users Only
2020
Authors
Rakočević, LazarŠtrbac, Svetlana

Potočnik, Jelena

Popović, Maja
Jugović, Dragana

Simatović, Ivana Stojković
Article (Accepted Version)
Metadata
Show full item recordAbstract
Cathodic material for sodium-ion rechargeable batteries based on NaxMnO2 were synthesized by glycine nitrate method and subsequent annealing at high temperatures. Different crystal structures with different morphologies were obtained depending on the annealing temperature: hexagonal layeredα-Na0.7MnO2.05 nanoplates were obtained at 850 °C, while 3-D tunnel structured Na0·4MnO2 and Na0·44MnO2, both with rod-like morphology, were obtained at 800 °C and 900 °C, respectively. The investigations of the electrochemical behavior of obtained cathodic materials in aqueous NaNO3 solution have shown that Na0·44MnO2 obtained at 900 °C has shown the best battery performance. Its initial discharge capacities are 123.5 mA h/g, 113.2 mA h/g, and 102.0 mA h/g at the high current densities of 1000, 2000 and 5000 mA/g, respectively.
Keywords:
aqueous sodium-ion batteries / cathode material / sodium manganese oxide / nanoplates / nanorodsSource:
Ceramics International, 2020Publisher:
- Elsevier BV
Projects:
- http://dx.doi.org/10.13039/501100004564
- Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200017 (University of Belgrade, Institute of Nuclear Sciences 'Vinča', Belgrade-Vinča) (RS-200017)
- Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200026 (University of Belgrade, Institute of Chemistry, Technology and Metallurgy - IChTM) (RS-200026)
- Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200175 (Institute of Technical Sciences of SASA, Belgrade) (RS-200175)
- Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200146 (University of Belgrade, Faculty of Physical Chemistry) (RS-200146)
Note:
- This is the peer-reviewed version fo the article: Rakočević, L., Štrbac, S., Potočnik, J., Popović, M., Jugović, D., Simatović, I.S., 2020. The NaxMnO2 materials prepared by a glycine-nitrate method as advanced cathode materials for aqueous sodium-ion rechargeable batteries. Ceramics International. https://doi.org/10.1016/j.ceramint.2020.10.025