DAIS - Digital Archive of the Serbian Academy of Sciences and Arts
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   DAIS
  • Институт техничких наука САНУ / Institute of Technical Sciences of SASA
  • ИТН САНУ - Општа колекција / ITS SASA - General collection
  • View Item
  •   DAIS
  • Институт техничких наука САНУ / Institute of Technical Sciences of SASA
  • ИТН САНУ - Општа колекција / ITS SASA - General collection
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Ceramics, materials, microelectronics and graph theory new frontiers

Thumbnail
2020
10.1142@S0217984921501591-accepted.pdf (10.83Mb)
Authors
Ranđelović, Branislav M.
Mitić, Vojislav V.
Ribar, Srđan
Lu, Chun-An
Radović, Ivana
Stajčić, Aleksandar
Novaković, Igor
Vlahović, Branislav
Article (Accepted Version)
Metadata
Show full item record
Abstract
This research is focused on further developing of application and use of graph theory in order to describe relations between grains and to establish control over layers. We used functionalized BaTiO3 nanoparticles coated with Yttrium-based salt. The capacitance change results on super-microstructure levels are the part of the measured values on the bulk samples. The new idea is graph theory application for determination of electronic parameters distribution at the grain boundary and to compare them with the bulk measured values. We present them with vertices in graph, corresponding with grains, connected with edges. Capacitance change with applied voltage was measured on samples sintered in air and nitrogen, up to 100 V. Using graph theory, it has been shown that capacitance change can be successfully calculated on the layers between grains. Within the idea how to get parameters values at microlevel between the grains and pores, mathematical tool can be developed. Besides previously de...scribed 1D case, some original calculations for 2D cases were performed in this study, proving successful graph theory use for the calculation of values at nanolevel, leading to a further minituarization in micropackaging.

Keywords:
intergranular capacitance change / graph theory / electronic signal / computing technology
Source:
Modern Physics Letters B, 2020, 34, 2150159-
Publisher:
  • World Scientific Pub Co Pte Lt
Note:
  • This is the peer reviewed version of the article: Randjelović, B.M., Mitić, V.V., Ribar, S., Lu, C.-A., Radovic, I., Stajcic, A., Novakovic, I., Vlahovic, B., 2020. Ceramics, materials, microelectronics and graph theory new frontiers. Mod. Phys. Lett. B 34, 2150159. https://doi.org/10.1142/S0217984921501591
  • Published version: https://hdl.handle.net/21.15107/rcub_dais_10032
Related info:
  • Version of
    https://hdl.handle.net/21.15107/rcub_dais_10032
  • Version of
    http://dx.doi.org/10.1142/S0217984921501591

DOI: 10.1142/S0217984921501591

ISSN: 0217-9849; 1793-6640

WoS: 000599923700012

Scopus: 2-s2.0-85097176369
[ Google Scholar ]
10
5
Handle
https://hdl.handle.net/21.15107/rcub_dais_10031
URI
https://dais.sanu.ac.rs/123456789/10031
Collections
  • ИТН САНУ - Општа колекција / ITS SASA - General collection
Institution/Community
Институт техничких наука САНУ / Institute of Technical Sciences of SASA
TY  - JOUR
AU  - Ranđelović, Branislav M.
AU  - Mitić, Vojislav V.
AU  - Ribar, Srđan
AU  - Lu, Chun-An
AU  - Radović, Ivana
AU  - Stajčić, Aleksandar
AU  - Novaković, Igor
AU  - Vlahović, Branislav
PY  - 2020
UR  - https://dais.sanu.ac.rs/123456789/10031
AB  - This research is focused on further developing of application and use of graph theory in order to describe relations between grains and to establish control over layers. We used functionalized BaTiO3 nanoparticles coated with Yttrium-based salt. The capacitance change results on super-microstructure levels are the part of the measured values on the bulk samples. The new idea is graph theory application for determination of electronic parameters distribution at the grain boundary and to compare them with the bulk measured values. We present them with vertices in graph, corresponding with grains, connected with edges. Capacitance change with applied voltage was measured on samples sintered in air and nitrogen, up to 100 V. Using graph theory, it has been shown that capacitance change can be successfully calculated on the layers between grains. Within the idea how to get parameters values at microlevel between the grains and pores, mathematical tool can be developed. Besides previously described 1D case, some original calculations for 2D cases were performed in this study, proving successful graph theory use for the calculation of values at nanolevel, leading to a further minituarization in micropackaging.
PB  - World Scientific Pub Co Pte Lt
T2  - Modern Physics Letters B
T1  - Ceramics, materials, microelectronics and graph theory new frontiers
SP  - 2150159
VL  - 34
DO  - 10.1142/S0217984921501591
UR  - https://hdl.handle.net/21.15107/rcub_dais_10031
ER  - 
@article{
author = "Ranđelović, Branislav M. and Mitić, Vojislav V. and Ribar, Srđan and Lu, Chun-An and Radović, Ivana and Stajčić, Aleksandar and Novaković, Igor and Vlahović, Branislav",
year = "2020",
abstract = "This research is focused on further developing of application and use of graph theory in order to describe relations between grains and to establish control over layers. We used functionalized BaTiO3 nanoparticles coated with Yttrium-based salt. The capacitance change results on super-microstructure levels are the part of the measured values on the bulk samples. The new idea is graph theory application for determination of electronic parameters distribution at the grain boundary and to compare them with the bulk measured values. We present them with vertices in graph, corresponding with grains, connected with edges. Capacitance change with applied voltage was measured on samples sintered in air and nitrogen, up to 100 V. Using graph theory, it has been shown that capacitance change can be successfully calculated on the layers between grains. Within the idea how to get parameters values at microlevel between the grains and pores, mathematical tool can be developed. Besides previously described 1D case, some original calculations for 2D cases were performed in this study, proving successful graph theory use for the calculation of values at nanolevel, leading to a further minituarization in micropackaging.",
publisher = "World Scientific Pub Co Pte Lt",
journal = "Modern Physics Letters B",
title = "Ceramics, materials, microelectronics and graph theory new frontiers",
pages = "2150159",
volume = "34",
doi = "10.1142/S0217984921501591",
url = "https://hdl.handle.net/21.15107/rcub_dais_10031"
}
Ranđelović, B. M., Mitić, V. V., Ribar, S., Lu, C., Radović, I., Stajčić, A., Novaković, I.,& Vlahović, B.. (2020). Ceramics, materials, microelectronics and graph theory new frontiers. in Modern Physics Letters B
World Scientific Pub Co Pte Lt., 34, 2150159.
https://doi.org/10.1142/S0217984921501591
https://hdl.handle.net/21.15107/rcub_dais_10031
Ranđelović BM, Mitić VV, Ribar S, Lu C, Radović I, Stajčić A, Novaković I, Vlahović B. Ceramics, materials, microelectronics and graph theory new frontiers. in Modern Physics Letters B. 2020;34:2150159.
doi:10.1142/S0217984921501591
https://hdl.handle.net/21.15107/rcub_dais_10031 .
Ranđelović, Branislav M., Mitić, Vojislav V., Ribar, Srđan, Lu, Chun-An, Radović, Ivana, Stajčić, Aleksandar, Novaković, Igor, Vlahović, Branislav, "Ceramics, materials, microelectronics and graph theory new frontiers" in Modern Physics Letters B, 34 (2020):2150159,
https://doi.org/10.1142/S0217984921501591 .,
https://hdl.handle.net/21.15107/rcub_dais_10031 .

DSpace software copyright © 2002-2015  DuraSpace
About DAIS - Digital Archive of the Serbian Academy of Sciences and Arts | Send Feedback

CoreTrustSealre3dataOpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About DAIS - Digital Archive of the Serbian Academy of Sciences and Arts | Send Feedback

CoreTrustSealre3dataOpenAIRERCUB