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Abstract:

Wearable smart monitors (WSM) applied for the estimation of 
electrophysiological signals are of utmost interest for a non-stressed life. 
WSM which records heart muscle activities could signalize timely a life-
threatening event. The heart muscle activities are typically recorded 
across the heart at the surface of the body; hence, a WSM monitor 
requires high quality surface electrodes. The electrodes used in the 
clinical settings (i.e., Ag/AgCl with the gel) are not practical for the daily 
out of clinic usage. A practical WSM requires the application of a dry 
electrode with stable and reproducible electrical characteristics. We 
compared the characteristics of six types of dry electrodes and one 
gelled electrode during short term recordings sessions (30s) in real-life 
conditions: Orbital - monolithic polymer plated with Ag/AgCl, and five 
rectangular shapes 10×6×2mm electrodes (Orbital, silver electrode, 
silver/silver chloride electrode, gold electrode, and stainless-steel 
AISI304). The results of a well-controlled analysis which considered 
motion artifacts, line noise, and junction potentials suggest that among 
the dry electrodes Ag/AgCl performs the best. The Ag/AgCl electrode is 
in average three times better compared with the stainless-steel electrode 
often used in WSM. 
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Abstract— Wearable smart monitors (WSM) applied for the estimation of electrophysiological signals are 

of utmost interest for a non-stressed life. WSM which records heart muscle activities could signalize timely 

a life-threatening event. The heart muscle activities are typically recorded across the heart at the surface of 

the body; hence, a WSM monitor requires high quality surface electrodes. The electrodes used in the 

clinical settings (i.e., Ag/AgCl with the gel) are not practical for the daily out of clinic usage. A practical 

WSM requires the application of a dry electrode with stable and reproducible electrical characteristics. We 

compared the characteristics of six types of dry electrodes and one gelled electrode during short term 

recordings sessions (30s) in real-life conditions: Orbital - monolithic polymer plated with Ag/AgCl, and 

five rectangular shapes 10×6×2mm electrodes (Orbital, silver electrode, silver/silver chloride electrode, 

gold electrode, and stainless-steel AISI304). The results of a well-controlled analysis which considered 

motion artifacts, line noise, and junction potentials suggest that among the dry electrodes Ag/AgCl 

performs the best. The Ag/AgCl electrode is in average three times better compared with the stainless-steel 

electrode often used in WSM. 

Keywords—Dry electrodes; signal quality; ECG; wearable monitor; motion artifacts, transient impedance
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Abbreviations

Ag/AgCl – silver/silver-chloride

ECG- electrocardiogram

EMG - electromyography

OM – output measure

PCB - printed circuit board 

RMS – root mean square

WSM – wearable smart monitor
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Introduction

Wearable smart monitors (WSM) are becoming practical tools for the improved quality of life because of 

the information and communication technologies development (miniaturization and online communication 

via smartphones or similar devices). The WSM of electrical potentials originating from the heart muscle 

could function as an on-line predictor of the need for an urgent intervention. 

We show (Figure 1) examples of WSM used for the short-term recordings (up to 30s) of the 

electrocardiogram (ECG) that can be sent in the digital form to a remote center for inspection. 

Figure 1.    Examples of the hand-held ECG devices on the market: Kardia, AliveCor, US (left panel); CARDIO-B PALM ECG, 
GIMA, IT (middle panel), ECG check, Cardiac Designs, US (right panel). All three devices use stainless steel electrodes.

Many ECG WSM use stainless-steel electrodes touched by the fingers or palms of opposite arms (Lead I), 

but other types of dry electrodes made of different composites materials are emerging [1]. The 

commercially available ECG WSMs for short-term recordings measure the heart rate and, in some cases, 

detect the atrial fibrillations [2] from Lead I (records between the opposite hands). The new generation of 

ECG WSMs will allow automatic detection of much more, including the cardiac ischemia (ST segment 

shift) [3]. In this case, the ANSI standard for high-pass filtering must be followed (cutoff at 0.05 Hz), and 

raw signal quality is of utmost importance for obtaining high sensitivity and specificity of ischemia 

detection [4]. 

The WSM must measure the minimally distorted, noise-free electrophysiological signals, especially if the 

diagnostics are automatic without expert supervision. The critical points are the electrodes which transform 

the ionic to electron currents. The noise contaminating the recordings comes from power lines (50 or 60 

Hz), motion artifacts due to movements or breathing, muscle electrical activities (EMG), short-term or 

long-term drifts due to temperature stabilization, the influence of light or changes in the electrode-skin 

impedances. To minimize the effects, a conductor covered with the hypo-allergic gel is being used. The 

gelled Ag/AgCl electrodes are considered as a golden standard. The chemical stability of the skin to 
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5

Ag/AgCl with gel interface minimizes most of the above-listed artifacts and allows the digital filtering to 

successfully “clean” the recordings [5,6]. However, the use of Ag/AgCl with gel is not practical, and most 

of the smart wearable devices tend to integrate reusable dry electrodes.

If dry electrodes are used, then the incidence of motion artifacts are much higher compared with the use of 

wet (pre-gelled) electrodes [4,7]. Also, dry electrode half-cell potentials on the electrode-skin junction and 

junction potentials between surface layers of the skin are time variable [8].

The current development of an ECG WSM required the analysis of the optimal dry electrodes. We focused 

on finding the optimal reusable dry electrodes that can be part of the printed circuit board (PCB) with 

minimal motion artifacts. In this paper, we present the performances of custom-made electrodes made of 

various types of metals that were mechanically compliant to our design such as stainless steel, silver, 

silver/silver chloride (Ag/AgCl) and gold. We did not consider rubber-based electrodes because they 

cannot be integrated into the PCB design. We compared the performances of the commercially available 

wet electrodes (Top Trace 51x33mm, Ceracarta, IT) and Orbital electrodes (Orbital Research Inc, 

Cleveland, OH, USA) [9]. The output measures were related to noise and motion artifacts in ECG-free 

signals recorded from the fingers since we investigated the electrical characteristics of the electrode-skin 

interface.

The characterization of electrodes in stationary conditions or long-term records is well documented in the 

literature [10,11], but the application of WSM held in hand does not belong to the stationary conditions. 

Therefore, we evaluated artifacts during the transitional changes of the electrode-skin interface (≈ 30 

seconds from touching the electrodes). The frequency spectrum of ECG signals overlaps with artifacts; 

therefore, it is impossible to clearly separate ECG from the artifacts. If we record ECG-free signals with the 

same electrodes positioned at the same skin areas, then we measure only artifacts. These signals would 

simply superpose on the ECG action potentials when the ECG is measured. That is why we positioned the 

two electrodes at two fingers of the same hand to minimize the effects of electrophysiological signals 

(muscle activities and ECG). A similar method was suggested by Searle and Kirkup [10] who compared 
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motion artifacts from three different pairs of electrodes by attaching them rigidly to the same housing with 

a fixed frequency vibrating element and placing them on the surface of one forearm. Our approach 

introduces three fundamental difference compared with what has been done: 1) the position of the 

electrodes was on the actual place where they are used for recording in ECG WSM (on the fingertips), 2) 

motion artifact was naturally induced in two typical positions of the forearm and 3) multiple output 

measures were calculated from the statistical analysis of the repeated recordings.

Methods
Protocol and instrumentation

Instrumentation. Custom designed holders for fingers (Figure 2, lower panel) supported seven sets of 

electrodes made of different materials and shapes (Figure 2, upper panel):

1. WET: a commercial wet electrode, Top Trace from Ceracarta (51x33 mm, metal contact diameter: 7 

mm, hydrogel diameter: 17mm)

2. ORB: monolithic polymer plated with Ag/AgCl from Orbital (diameter: 25 mm, effective surface 500 

mm2 and pin height:150 µm, front to back resistance: 0.4 Ω)

3. ORB CUT: we cut Orbital electrode in the rectangular shape (10 x 6 x 2 mm) to fit our device design 

(front to back resistance: 8 Ω)

4. AG: a custom-made silver electrode in the same shape as ORB CUT (front to back resistance: 0.5 Ω)

5. AG/AGCL: a custom-made silver/silver chloride electrode in the same shape as ORB CUT (front to 

back resistance: 0.4 Ω)

6. AU: a custom-made gold electrode in the same shape as ORB CUT (front to back resistance: 0.5 Ω)

7. INOX: a custom-made stainless-steel (AISI304) electrode in the same shape as ORB CUT (front to 

back resistance: 0.5 Ω)

We chose the manufacture all metal electrodes in the shape of Orbital electrode because they can penetrate 

the hair on the chests in future use. The preparation of the custom-made electrodes was done in the 
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institution workshop to avoid any edge effects. We present the results of the evaluation of the electrode-

skin impedance for each type of electrode in Appendix.

Figure 2.  Upper panel: electrode types, lower panel: measurement setup. Recordings were made between the thumb and middle 
finger of one hand (no ECG, only noise, and artifacts) in two positions: arm supported on the table and elbow supported with the 

forearm in the upright position.

A host computer operating in the Windows environment captured signals. The digital amplifier which 

integrates a 24-bit A/D converter (ADS1298, Texas Instruments, TX, USA) with the gain of the input 

instrumentation amplifiers set at A = 12, in the DC coupled mode was connected to the electrodes. 

Subjects: Ten volunteers (4 men and 6 women, age 35±11, BMI 23.9 ± 4.3) with no known skin, adipose 

tissue, vascular disorder or pathological tremor volunteered in the study. All subjects signed the informed 

consent approved by the Ethics Committee of the Medical School, University of Belgrade, Belgrade. 

Protocol: The subjects were sitting comfortably next to a table, with one elbow supported by the table. The 

measurements included two setups (Figure 2, lower panel): 1) the forearm was resting on the table, and the 

subject was holding the electrodes on the sides of the device with his/her thumb and middle finger, and 2) 

the forearm was pointing against the gravity. Subjects were instructed to relax as much as possible (a 

minimum contraction of forearm muscles and no motion). Three sessions, lasting 30s each, were recorded 

for both setups. In total, 420 sets of signals were recorded (6 per subject × 7 electrode types × 10 subjects), 

or 6×10×30=1800s of recordings in natural conditions per each electrode type.

Data analysis

All data processing was done in Matlab 2014b (Mathworks, Natick, USA). We used six recordings per 

electrode type per subject to estimate the mean±std (standard deviation) values for each output measure. 

All records were heuristically inspected for unlikely irregularities (e.g. excess 50 Hz noise due to poor 

contact, recording interrupted or subject moved during recording). If the inspection suggested high 

contamination by the noise of non-physiological source other than 50 Hz, then these signals were excluded 
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from the further analysis.

As there was a substantial difference in absolute values between subjects, we normalized values for all 

electrodes in each subject with the following formula:

𝑂𝑀𝑁𝑂𝑅𝑀
𝑖 =

𝑂𝑀𝑖

∑7
𝑗 = 1𝑂𝑀𝑗

where OM is output measure, and i and j are representing the type of electrode.

Seven different output measures were developed to quantify various aspects of noise and artifacts in ECG 

recordings and their influence on proper ECG signal reading and diagnosis. Signal processing steps and 

output measures (OM) were the following:

1. OM 1: The RMS value of 50 Hz power-line noise (a band-pass filtered original signal with 3rd 

order Butterworth filter between 48-52 Hz)

2. OM 2: The RMS value of 6-13 Hz tremor (a band-pass filtered original signal with 3rd order 

Butterworth filter between 6-13 Hz). Physiological tremor is expected oscillatory motion in fingers of all 

healthy individuals in the frequency range of 6-13Hz with different amplitudes depending on the current 

physiological and psychological conditions [12,13].

3. The component of the signal from the muscle activities (EMG): After subtracting 50 Hz noise and 

tremor (same filtered signals which were used to calculate OM 1 and OM 2) from the original signals, the 

signals were low-pass filtered with 3rd order Butterworth filter at 30 Hz to remove EMG signals. EMG 

frequency range is 30-300 Hz. EMG component can be seen in Fig.3A. 

4. The high-pass filtered (HPF) signals at: a) 0.05 Hz (FIR filter with order 4496) or b) 1 Hz (3rd order 

Butterworth filter). We selected the cutoff frequency at 0.05 Hz based on standards for devices used for 

detection of ischemia (ST shift) and other heart pathologies. The 1 Hz cutoff was chosen for detection of 

heart rhythm (occurrence of QRS segments). 

5. OM 3: The RMS values of the signals after the high-pass filtering. These values provide a measure 

of total baseline wandering during 30s recording (there was no ECG in the recorded signals). Large 
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baseline wandering can make ECG signal reading difficult if there is no auto-scaling function on the 

reading device.

6. OM 4: The histograms with 7 BINs after each type of high-pass filtering:

(1) BIN001: number of samples with values ≤0.01mV

(2) BIN005: number of samples with values between 0.01mV-0.05mV

(3) BIN01: number of samples with values between 0.05mV-0.1mV 

(4) BIN02: number of samples with values between 0.1mV-0.2mV

(5) BIN05: number of samples with values between 0.2mV-0.5mV

(6) BIN1: number of samples with values between 0.5mV-1mV

(7) BINout: number of samples with values >1mV (typical amplitude of QRS segment recorded on the 

surface of the skin)

7. The duration of intervals in which all consecutive samples are smaller than 0.1mV after each type of 

high-pass filtering. This threshold was selected because it represents a minimal ST shift that can be 

interpreted as pathological [14]. This segment was named a "good" signal interval. OM 5: We calculated 

the longest "good" interval.

8. OM 6: The number of "good" segments lasting at least 5s for after each type of high-pass filtering. 

The duration of 5s was selected because in the most common case there would be at least five heartbeats 

within 5s. If the signal is artifact free during this period, it should be enough for a cardiologist to notice if 

there are any essential changes in the shape (not rate) of the ECG signal.

9. OM 7: The number of “good” segments lasting at least 2s after each type of high-pass filtering. The 

duration of 2s was selected because in general case there would be at least one heartbeat within 2s. 

Considering that the ECG signal can be randomly contaminated with noise and artifacts, if there were 

multiple 2s “good” intervals, then they can be selected to form a sequence of good quality heartbeat signals 

for the proper diagnosis of potential ischemia by the cardiologist.

Examples of how we calculated the number of "good" segments are the following: if a good segment (all 
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values <0.1mV) lasts 3s than it contains one 2s "good" segment and none of 5s "good" segments. If a 

"good" segment lasts 6s, then it includes three 2s "good" segments and one 5s "good" segment. If there are 

two "good" segments lasting 2s and 6s, then the recording contains four 2s "good" segments and one 5s 

"good" segment.

Statistical analysis was done in an Excel Xlstat program (Microsoft Office). Data were tested for 

normality with the Shapiro-Wilk normality test. Due to the relatively small sample size in the experiments, 

we used non-parametric tests. The Kruskal-Wallis test tested the significance of the results for independent 

samples with the significance level p=0.05.

Results and discussion

The graphical presentation of all calculated output measures is shown in Figure 3. The heuristic 

examination of signals resulted in the exclusion due to biological noise of just over 5% of the recorded 

signals (22 out of 420 recordings).

Different RMS values for all subjects and all electrodes are shown in Figure 4.

Figure 3.  All output measures of the recorded signals. A) Original signal and components originating from 50 Hz power line 
noise, 6-13 Hz tremor and EMG (>30 Hz), B) Power spectrum of original signal and the same signal after removing 50 Hz noise, 

tremor and EMG components, C) Longest “good” interval  (low and high red marks showing beginning and end of the “good” 
interval) and other “good” intervals (green marks) for signal high-pass filtered at 0.05 Hz, D) Seven-BIN histogram after high-

pass filtering at 0.05 Hz, E) Longest “good” interval (red marks showing beginning and end or interval) and other “good” 
intervals (green marks, none in this case) for signal high-pass filtered at 1 Hz, F) Seven-BIN histogram after high-pass filtering at 

1 Hz

Figure 4.  Absolute RMS values of different signal components originating from: power line noise between 48-52 Hz, motion 
artifact due to physiological tremor between 6-13 Hz, baseline wandering after removing 50 Hz noise and tremor and band-pass 
filtering between 0.05-30 Hz or 1-30 Hz. Standard deviations show the variability of results from 6 recordings in each subject. 

Numbers next to individual bars represent values of the bar that is out of the presented range. 

Summary statistics for each electrode type and each output measure are shown in Figure 5. The 

normalized values for all electrodes in each subject (e.g., in Figure 4, RMS of 50 Hz noise for subject 4, on 

AU and WET electrodes, is 0.47±0.25mV and 0.03±0.01mV, which equals to 33.9±18.3% and 1.9±0.9% 
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when normalized for subject 4, respectively) were used to calculate mean±std values for all subjects for 

each electrode type (Figure 5).

Figure  5.  Summary statistics for different output measures for seven electrode types. Top panels show a comparison of 
normalized RMS values of 50 Hz noise and tremor motion artifact. After low-pass filtering at 30 Hz and high-pass filtering at 
0.05 Hz (gray side) or 1 Hz (red side) RMS values quantify baseline wandering. Stacked bar plots represent values from the 
histograms divided into seven custom BINs. The length of the "good" segment (all samples in segment <0.1mV) is shown 

relative to the length of the whole recording (the 30s). The number of “good” segments lasting at least 5s or 2s are shown in 
bottom panels as orange and blue bars, respectively.

The orbital electrode in original form (ORB) and AG picked up the least of 50 Hz noise compared to 

other dry electrodes. Cutting Orbital (ORB) to rectangular shape resulted in 45% more noise, which was 

expected as decreasing the contact surface per se increases the impedance, which lowers the signal-to-noise 

ratio. Also, by cutting the surface conductive layer, we may have deteriorated the characteristics of the 

applied technology. AG/AGCL electrode picked up 5% less noise than ORB CUT. There was no 

statistically significant difference between AG/AGCL, ORB, ORB CUT, and AG electrodes. AU and 

INOX performed significantly worse than other tested electrodes. 

WET, AG/AGCL and ORB induce similar RMS values of tremorous finger motion between 6-13 Hz, 

while ORB CUT and AG recorded slightly larger amplitudes. AU and INOX performed significantly 

worse.

After high-pass filtering at 0.05 Hz the RMS value of the baseline wandering was the minimal for ORB 

(7.04%), followed by AG/AGCL (8.29%), ORB CUT (8.54%), AG (10.77%), AU (20.59%) and INOX 

(41.13%) compared to WET (3.64%). After high-pass filtering at 1 Hz the RMS value of the baseline 

wandering was minimal for AG/AGCL (7.45%), followed by ORB (8.31%), ORB CUT (10.54%), AG 

(10.84%), AU (20.59%) and INOX (37.01%) compared to WET (5.25%). AU and INOX were statistically 

worse than other electrodes in both cases of filtering.

After high-pass filtering at 0.05 Hz (clinical standard) ORB, ORB CUT, and AG/AGCL had a similar 

number of samples in all BINS. ORB had the highest number of samples in first three BINs (values up to 

0.1mV) (70.88%) compared to WET (82.97%). AG/AGCL (67.93%) and ORB CUT (65.93%) followed. 
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After high-pass filtering at 1 Hz (dynamic filtering), AG/AGCL had the highest number of samples in first 

BIN (values up to 0.01mV) following the WET closely. However, the number of samples in first BIN is 

irrelevant in the applications in which 1 Hz filtering is justified.

Histograms and quantity of low-value BINs are essential for distinguishing if the electrodes are more or 

less prone to noise and baseline wandering. Histograms are not good indicators of unpredicted abrupt 

changes in signals. For this purpose, we developed a new measure - the duration of "good" parts of a signal 

(where all the consecutive values are smaller than 0.1mV). After high-pass filtering at 0.05 Hz, the longest 

"good" interval in the 30s recording was obtained with AG/AGCL (9.08±5.67s) compared with WET 

(15.78±10.07s). AG (7.96±6.82s) and ORB CUT (7.95±3.39s) had better behavior than ORB (6.99±4.63s). 

AU and INOX barely had any 2s "good" intervals. After high-pass filtering at 1 Hz, the average duration of 

the longest "good" part of the signal was the best for AG/AGCL (24.6±4.06s) compared with WET 

(26.74±5.78s). AG had the highest number of "good" segments lasting at least 5s each (4.75±2.41s), but the 

results for WET, AG/AGCL, ORB, ORB CUT and AG were comparable. AU and INOX performed worse.

Results of the signal quality analyses are not all in line with the results of electrode-skin impedances 

presented in the Appendix. An example is that AG/AGCL electrode had high values of impedance, but still 

recorded well the signals from the skin surface. This statement is in line with Chi et all. [1] presenting that 

the low resistance (high conductance) is not essential for the good electrode performance, and that 

maximizing resistance (minimizing conductance) in electrode-skin coupling could be beneficial in 

specific cases. 

The results in favor of Ag/AgCl based electrodes are following our previous work (unpublished results). 

We tested ORB CUT electrode performance in a study that included 2096 recordings from 34 subjects 

using prototype hand-held devices in the home environment. We found that the signal quality was 

acceptable for detection of ST shift in 95% of the recordings.
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Conclusion

We compared the performance of different dry, eventually PCB mountable, non-expensive materials that 

could be used as dry electrodes in ECG WSM. The golden standard is Ag/AgCl electrode with gel, 

described in the literature [15]. We measured the signals coming from the body at the skin with different 

dry electrodes in real-life situations and classified them into seven metrics. The results suggest that 

Ag/AgCl based electrodes perform best regardless of the shape and large inter-subject variability. ORB 

minimizes the power line noise, introduces small base-line wandering and allows the most extended good 

quality recording sections when compared to other dry electrodes. The next in line are Ag/AgCl dry 

electrodes picking up little more power line noise and comprising a most substantial number of short 

sequences of good quality signals. Electrodes based on other materials showed worse characteristics in our 

measurements. INOX performed the worse in all metrics. 

Filtering at 1 Hz substantially lowers the baseline wandering and other motion artifacts, leading to less 

differentiation in the behavior of different dry electrodes compared to each other and compared to wet 

electrodes. That means that in applications such as detection of heart rate or atrial fibrillations with high-

pass filtering at 1 Hz the use of INOX electrodes may be justified as an acceptable tradeoff between the 

price, durability, and quality. However, for the applications in ECG WSM with algorithms for automatic 

detection of cardiac ischemia and other heart diseases based on the assessment of the morphology of the 

ECG signals, the ANSI standard for high-pass filtering must be followed (high-pass filtering limit at 0.05 

Hz). In those applications, much better performance can be achieved with Ag/AgCl based electrodes. 

We used 7 metrics to evaluate the characteristic of dry electrodes made of different materials. Depending 

on the application, different metrics can be more important. For instance, if the electrode is used in WSM 

device to automatically detect ischemia (with HPF at 0.05 Hz) then the most significant differences are 

found in the number of 5s segments with all signals <0.1mV. If the WSM is used to detect arrythmias (with 

HPF at 1 Hz) than the most significant differences are found in RMS values after filtering. The results of 
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our study suggest that the electrode-skin impedance is not necessarily a good indicator of the electrode 

performance for short term recordings. 

Appendix

Electrode-skin impedance was measured in the 10 subjects described earlier, with the experiment setup 

shown in Figure 6. OP177 is an operational amplifier (OP) with the high input impedance (45 MΩ). One 

electrode was connected to the negative input of OP and other electrode of the same type was connected to 

the output of the OP.  Electrode pairs were positioned on a plexiglass plane. Subject touched with his/her 

left and right index finger two electrodes of the same type on different planes. 

Vin is a complex low-voltage periodic signal composed of 22 sine waves at different frequencies, described 

by the term:

𝑉𝑖𝑛 =
22

∑
𝑖 = 1

0.5 ∗ sin (2𝜋𝑖2)

Vin was generated as an analogue output on NI6363 USB DAQ board, in LabView program (National 

Instruments, Texas). For each subject Rcurrent was selected to one of the values [500KΩ, 5MΩ, 50MΩ] 

based on the highest values of impedance in the subjects to avoid saturation of Vout and optimize the 

resolution of 16 bit AD conversion. Vout was acquired on one analogue input by the same LabView 

program. Each acquisition lasted 40s. Subject placed the fingers on electrodes after the acquisition started, 

to ensure the recordings from the instant when the skin touched the electrode (example in Figure 7A). After 

touching the electrodes the palms were resting on the plexiglass board to minimize the motion.

Figure.6. Experiment setup for recording of electrode-skin impedance and model of the electrode-skin interface 
(modified from [1]).  Ehc is a half-cell potential due to interaction of the skin humidity and sweat with the electrode.
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From the recorded signals the program automatically detected the instant when the skin touched the 

electrodes, as the position of time window of width fs  (fs is sampling rate) in which the equation:

max(𝑉𝑜𝑢𝑡) <  0.5 ∗ 𝑚𝑎𝑥(𝑉𝑖𝑛)

was satisfied for the first time (black line in Figure 7A).

We calculated Fourier Transform (FFT) of Vin and Vout in time windows of 2*fs (example in Figure 7B):

𝐹𝑖𝑛[𝑗] = 𝐹𝐹𝑇{𝑉𝑖𝑛[𝑘]}

𝐹𝑜𝑢𝑡[𝑗] = 𝐹𝐹𝑇{𝑉𝑜𝑢𝑡[𝑘]}

Impedance was calculated from the formula:

𝑍 =
𝐹𝑜𝑢𝑡

𝑅𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ∗ 𝐹𝑖𝑛

The impedance values for time windows [0, 2s], [3s, 5s], [15s, 17s] and [28s, 30s] are shown in Figure 7C 

(real and imaginary parts) and 7D (absolute values). Transitional time behaviors of impedances for selected 

frequencies (|Z(j)|, where j corresponds to frequencies of 1, 3, 8, 16, 25 and 81 Hz) are shown in Figure 7E.

The same trends were found in all subjects. The only differences were the maximum and minimum values 

of the impedance (Figure 8).

Figure 7. Results of electrode-skin impedances for different electrodes in one subject. Presented values are for two electrode-skin 
contacts in series (two fingers on two different electrodes).

Figure 8. Minimum and maximum electrode-skin impedance absolute values from all subjects. All the values are doubled.
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Fig. 1.    Examples of the hand-held ECG devices on the market: Kardia, AliveCor, US (left panel); CARDIO-
B PALM ECG, GIMA, IT (middle panel), ECG check, Cardiac Designs, US (right panel). All three devices use 

stainless steel electrodes. 
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Fig. 2.  Upper panel: electrode types, lower panel: measurement setup. Recordings were made between the 
thumb and middle finger of one hand (no ECG, only noise, and artifacts) in two positions: arm supported on 

the table and elbow supported with the forearm in the upright position. 
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Fig. 3.  All output measures of the recorded signals. A) Original signal and components originating from 
50Hz power line noise, 6-13Hz tremor and EMG (>30Hz), B) Power spectrum of original signal and the same 
signal after removing 50Hz noise, tremor and EMG components, C) Longest “good” interval  (low and high 
red marks showing beginning and end of the “good” interval) and other “good” intervals (green marks) for 
signal high-pass filtered at 0.05Hz, D) Seven-BIN histogram after high-pass filtering at 0.05Hz, E) Longest 

“good” interval (red marks showing beginning and end or interval) and other “good” intervals (green marks, 
none in this case) for signal high-pass filtered at 1Hz, F) Seven-BIN histogram after high-pass filtering at 

1Hz 
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Fig. 4.  Absolute RMS values of different signal components originating from: power line noise between 48-
52Hz, motion artifact due to physiological tremor between 6-13Hz, baseline wandering after removing 50Hz 

noise and tremor and band-pass filtering between 0.05-30Hz or 1-30Hz. Standard deviations show the 
variability of results from 6 recordings in each subject. Numbers next to individual bars represent values of 

the bar that is out of the presented range.   
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Fig. 5.  Summary statistics for different output measures for seven electrode types. Top panels show a 
comparison of normalized RMS values of 50Hz noise and tremor motion artifact. After low-pass filtering at 

30Hz and high-pass filtering at 0.05Hz (gray side) or 1Hz (red side) RMS values quantify baseline 
wandering. Stacked bar plots represent values from the histograms divided into seven custom BINs. The 

length of the "good" segment (all samples in segment <0.1mV) is shown relative to the length of the whole 
recording (the 30s). The number of “good” segments lasting at least 5s or 2s are shown in bottom panels as 

orange and blue bars, respectively. 
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Figure 6. Experiment setup for recording of electrode-skin impedance and model of the electrode-skin 
interface (modified from [16]).  Ehc is a half-cell potential due to interaction of the skin humidity and sweat 

with the electrode. 
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Figure 7. Results of electrode-skin impedances for different electrodes in one subject. Presented values are 
for two electrode-skin contacts in series (two fingers on two different electrodes). 
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Figure 8. Minimum and maximum electrode-skin impedance absolute values from all subjects. All the values 
are doubled. 
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