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 
Abstract-Correcting single and detecting adjacent errors has 

become important in memory systems using high density DRAM 
chips. The reason is that, in these systems, the strike of a single 
energetic particle can upset one or more adjacent bits. In this 
paper, we present a simple solution for this problem based on 
integer codes capable of correcting single errors and detecting l-
bit burst errors within a b-bit byte (1 < l ≤ b). Unlike the classical 
approach, the proposed one does not rely on the use of dedicated 
encoding/decoding hardware. Instead, it uses the processor as 
both encoder and decoder. The effectiveness of such solution is 
demonstrated on a theoretical model of an eight-core processor. 
The obtained results show that it has the potential to be used in 
future DDR5 systems. 
 

Index Terms-Integer codes, single errors, burst errors, DRAM 
chips, eight-core processor. 

I. INTRODUCTION 

The last 40 years have seen a great progress in the design 
of DRAM chips. They became more and more dense, which 
reflected an increase in their capacity [1]. Along with these 
advances, the need to protect DRAM data from bit errors has 
also increased. Unlike older generations of DRAMs, the newer 
ones were (and still are) organized in a b-bit-per-chip manner 
(b = 4, 8, 16 and 32 bits). Because of this, they became more 
susceptible to bit errors caused by radiation effects [1]-[4].  

In an attempt to mitigate this problem, engineers began to 
protect DRAM data with linear error correcting codes (ECCs). 
Among them, the most widely used are single error correcting 
and double error detecting (SEC-DED) codes [1]. In practice, 
these codes are always implemented in hardware. Specifically, 
the encoding/decoding (E/D) circuits are added to the DRAM 
controller, while one or two additional DRAM chips are used 
to store the check bits (DDR4 systems use one additional chip, 
while DDR5 systems will use two additional chips). 

In contrast to this hardware-oriented approach, this paper 
proposes a different and much cheaper approach. The essence 
of our idea is to use codes that have low redundancy, that can 
be easily implemented in software, and that can correct/detect 
small number of adjacent errors (which are the most common 
types of errors in DRAM memories [1]-[4]). Since none of the 
existing ECCs meets these requirements, it is necessary to 
construct codes with quite unique properties. In this paper, we 
will show how one class of such codes can be constructed. In 
addition, we will show how these codes can be used in future 
DDR5 systems. 
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The organization of this paper is as follows: Section II 
deals with the construction of integer codes correcting single 
errors and detecting all l-bit burst errors confined to one b-bit 
byte (1 < l ≤ b) (l/b burst errors) (integer SEC-Bl/bED codes). 
The error control procedure for these codes is described in 
Section III, while Section IV is devoted to the evaluation and 
application of integer SEC-Bl/bED codes in future DDR5 
systems. Finally, Section V concludes the paper.  

II. CODES CONSTRUCTION 

In the coding literature, one can find many ECCs capable 
of correcting single errors and detecting adjacent errors [5]-
[13]. The common feature for all these codes is that they use 
finite field (FF) operations to encode/decode data bits. For this 
reason, they are practically applicable only if implemented in 
dedicated chips (modern processors do not equip hardware for 
FF arithmetic). In contrast to [5]-[13], the proposed codes are 
suited for software implementation, since they are defined 
over the ring of integers modulo 2b – 1. This is formally 
described by the following definitions. 

Definition 1. [15] Let
2 1bZ =  {0, 1, …, 2b – 2} be the ring of 

integers modulo 2b – 1 and let
1

0
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representation of a b-bit byte, where na {0, 1} and 1 ≤ i ≤ k.  

Then, the code C    (b, k, c), defined as 
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is an (kb + b, kb) integer code, where x = (B1, B2, ..., Bk, Bk+1) 
1

2 1b

kZ 


 is the codeword vector, c = (C1, C2, ..., Ck, 1) 1

2 1b

kZ 


 is 

the coefficient vector and Bk+1 2 1
 bZ is an integer. 

Definition 2. Let x = (B1, B2,…, Bk, Bk+1)
1

2 1b

kZ 


 , y = (B1, 

B2, …, Bk, Bk+1)
1

2 1b

kZ 
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 and e = (B1 – B1, B2 – B2,  …, Bk – Bk, 

Bk+1 –        Bk+1) = (e1, e2,..., ek,\ ek+1)
1

2 1b

kZ 


 be the written codeword, 

the readout codeword and the error vector, respectively. Then, 
the syndrome S of the readout codeword is defined as 

+1

+1
1 1

(mod 2 1) (mod 2 1)i i k i i
 
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The first step in constructing integer SEC-Bl/bED codes is 
to determine the integer values of single and l/b burst errors. 
For that purpose, we will rely on the analysis from [14] and 
[15]. In the first paper, it was shown that the integer value of a 
l/b burst error is equal to ei = ± 2r·(2m ‒ 1), where 0 ≤ r ≤ b ‒ 
l, 1 ≤ m ≤ 2t-1 and 1 ≤ t ≤ l. On the other hand, from [15] we 
know that the integer value of a single error is equal to ei = ± 
2r, where 0 ≤ r ≤ b ‒ 1. Having these in mind, we can state the 
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 following definitions and theorem. 
Definition 3. The set of syndromes corresponding to single 

errors is defined as 

 
1 1

1
0 1

= ± 2 (mod 2 1)


 

 
b- k

r b
i

r i

s C                                                                                                                                                                                                                                                                                                                                                                                                      (3) 

Definition 4. The set of syndromes corresponding to l/b 
burst errors is defined as 

 
12 1

2
0 1 1 1

= ± 2 (2 1) (mod 2 1)
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Theorem 1. The cardinality of the set s1 is  

1 2 ( 1 .)= b k + s  

Proof. The proof is given in [15]. □ 
Theorem 2. The codes defined by (1) can correct all single 

errors and detect all l/b burst errors if there exists k mutually 
different coefficients Ci such that 
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where 1s denotes the cardinality of s1. 

Proof.   From [15] we know that Condition 1 is the necessary 
and sufficient condition for correcting single errors. On the 
other hand, Conditions 2 and 3 ensure that the syndromes 
caused by l/b burst errors are nonzero and different from those 
generated by single errors. This asserts that l/b burst errors are 
detectable, and therefore, the codes satisfying the conditions 1 
to 3 are (kb + b, kb) integer SEC-Bl/bED codes. □ 

From Theorem 2 we see that the cardinality of the set s2 is 
not known in advance. The reason is that some l/b burst errors 
may generate the same detectable syndrome. 

Theorem 3. Let s3 be the set of syndromes corresponding to 
multiple errors (m-errors) excluding l/b burst errors. Then, for 
any (kb + b, kb) integer SEC-Bl/bED code it holds that 

2 32 2 2
.

2
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b
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b s s
k                       

Proof. Definition 1 states that the total number of nonzero 
syndromes is equal to 2b – 2. On the other hand, the number of 
nonzero syndromes that respectively corresponds to single 
errors, l/b burst errors and m-errors is equal to |s1|, |s2| and |s3|. 
As a result, we have the inequality 

2 32 ( 1 2 2)b k +     bs s  

where from it follows that 

2 32 2 2
.

2

b

b

     
  

 

b s s
k □ 

The last step in constructing integer SEC-Bl/bED codes is to 
find the Ci's satisfying the conditions of Theorem 1. As this 

task cannot be performed without using a computer, it was 
necessary to write a suitable computer program. By using it, it 
is also possible to find out how the number of the Ci's depends 
on the byte length. Some of the obtained results are shown in 
Tables I-III. 

III. ERROR CONTROL PROCEDURE 

The error control procedure (ECP) for the proposed codes is 
similar to those described in [14]-[17]. In short, when S ≠ 0, 
the decoder will lookup the syndrome table (ST) to obtain the 
error correction data (ECD). If such data are not present in the 
ST, the decoder will declare a decoding failure. Otherwise, it 
will perform the operation 

(mod 2 1)i i  bB B E                                                                                                                                                                                                                                                                                                                                                                                                                                                                       (5) 

TABLE I 
NUMBER OF COEFFICIENTS FOR SOME INTEGER SEC-Bl/bED CODES.                     

 b = 6 b = 7 b = 8 b = 9 b = 10 b = 11 b = 12 b = 13 

l = 3 
k 0 1 6 8 13 27 85 99 

|s2| 0 56 104 244 504 964 1758 4252 
|s3| 0 42 38 104 238 466 272 1338 

l = 4 
k 0 0 2 3 7 17 38 58 

|s2| 0 0 142 72 574 1284 2376 5176 
|s3| 0 0 66 186 288 366 782 1480 

 

TABLE II 
COEFFICIENTS FOR SOME INTEGER SEC-B3/bED CODES. 

b = 7 
11            

b = 8 
9 13 19 21 25 43       

b = 9 
9 11 15 19 23 29 35 37     

b = 10 
9 11 13 19 21 23 35 47 49 51 59 71 

89            
b = 11 

9 11 13 15 17 19 21 23 25 29 35 41 
49 53 67 71 83 93 101 111 113 141 155 163 
199 211 217          

b = 12 
9 11 13 15 17 19 21 23 25 29 31 35 

37 41 43 47 53 59 61 67 71 73 79 81 
83 89 97 99 101 107 109 113 121 137 139 143 
149 151 153 157 163 165 167 169 173 181 187 197 
199 209 211 221 227 229 231 233 239 277 279 281 
283 285 293 299 307 311 313 331 341 347 349 359 
361 397 403 409 421 437 439 587 589 619 661 683 
691            

b = 13 
9 11 13 15 17 19 21 23 25 29 31 35 

37 41 43 47 49 53 59 61 67 71 79 81 
83 89 99 101 107 109 113 117 121 131 135 139 
143 151 153 163 165 167 179 181 187 189 195 197 
199 209 211 219 225 227 229 233 241 275 277 279 
283 313 315 323 325 331 337 341 347 349 357 359 
361 373 431 455 457 465 477 549 555 557 587 589 
603 611 615 651 683 697 733 743 843 873 1171 1173 

1189 1229 1331          

 
TABLE III 

COEFFICIENTS FOR SOME INTEGER SEC-B4/bED CODES. 

b = 8 
21 43           

b = 9 
19 25 83          

b = 10 
17 19 21 23 43 47 53      

b = 11 
17 19 21 25 27 33 41 45 59 73 83 10
163 173 181 211 309        

b = 12 
17 19 21 23 25 27 29 31 33 37 41 45 
53 55 61 67 73 77 79 83 89 97 121 137 
141 167 181 197 211 227 293 301 307 309 311 327 
587 683           

b = 13 
17 19 21 23 25 27 29 33 35 37 39 41 
43 45 47 49 53 55 61 71 73 77 83 89 
91 93 101 107 109 121 131 143 151 167 169 173 
181 211 217 277 293 309 311 361 373 421 439 467 
547 571 601 603 627 711 739 1235 1323 1325   
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where E{  2r (mod 2b
     ‒ 1): 0 ≤ r ≤ b ‒ 1}. To avoid multiple 

table lookups, and thus speed up ECP, we will employ a 
different strategy than in [14]-[17]. It is based on the use of a 
ST that has 2b – 2 entries (Definition 1) (Fig. 1), of which |s1| 
contain the ECD (Theorem 2), while the remaining 2b – |s1| – 2 
indicate the presence of multiple errors (l/b burst errors and m-
errors). The pseudocode for generating such a ST is presented 
in Algorithm 1, while an illustration of its use is provided by 
the following example. 

Example 1. Let b = 8, l = 3, k = 4, C1 = 9, C2 = 13, C3 = 19 
and C4 = 21. Now, assume that the encoder needs to encode 32 
data bits, 10101001 11001001 10100010 10101010. From (1) 
we know that the integer value of the last (fifth) byte will be 
equal to 

4

+1 5 2mod 255 72 01001000
1

( )i i
    k i

B B C B  

and the codeword will have the following form: x = (B1, B2,  

 

Algorithm 1 The pseudocode for generating the ST                                                                             
                                                                                              

 
                                                                                      

B3, B4, B5) = (101010012, 110010012, 101000102, 101010102, 
010010002) = (169, 201, 162, 170, 72). 

Scenario 1: Suppose that the 6th bit is flipped. In that case, 
the codeword will have the form: y = (B1, B2, B3, B4, B5) = 
(101011012, 110010012, 101000102, 101010102, 010010002) = 
(173, 201, 162, 170, 72). As explained previously, the decoder 
will perform the operation 

TABLE IV 
THE COMPLETE ST FOR THE (40, 32) INTEGER SEC-B3/8ED CODE. 

 S i E 

 

 S i E 

 

 S i E 

 

 S i E 

 

 S i E 

 

 S i E 
1 1 5 1 44 44 0 0 87 87 4 8 130 130 0 0 173 173 0 0 216 216 0 0 
2 2 5 2 45 45 0 0 88 88 0 0 131 131 0 0 174 174 4 16 217 217 3 2 
3 3 0 0 46 46 0 0 89 89 0 0 132 132 1 127 175 175 0 0 218 218 0 0 
4 4 5 4 47 47 2 16 90 90 0 0 133 133 0 0 176 176 0 0 219 219 1 4 
5 5 0 0 48 48 0 0 91 91 0 0 134 134 2 127 177 177 0 0 220 220 0 0 
6 6 0 0 49 49 3 239 92 92 0 0 135 135 0 0 178 178 0 0 221 221 0 0 
7 7 0 0 50 50 0 0 93 93 4 32 136 136 0 0 179 179 3 4 222 222 1 32 
8 8 5 8 51 51 0 0 94 94 2 32 137 137 3 127 180 180 0 0 223 223 5 223 
9 9 1 254 52 52 2 251 95 95 0 0 138 138 4 127 181 181 0 0 224 224 0 0 
10 10 0 0 53 53 0 0 96 96 0 0 139 139 0 0 182 182 0 0 225 225 0 0 
11 11 0 0 54 54 0 0 97 97 0 0 140 140 0 0 183 183 1 8 226 226 0 0 
12 12 0 0 55 55 0 0 98 98 3 223 141 141 0 0 184 184 0 0 227 227 0 0 
13 13 2 254 56 56 0 0 99 99 0 0 142 142 0 0 185 185 0 0 228 228 0 0 
14 14 0 0 57 57 0 0 100 100 0 0 143 143 0 0 186 186 4 64 229 229 2 2 
15 15 0 0 58 58 0 0 101 101 0 0 144 144 1 239 187 187 0 0 230 230 0 0 
16 16 5 16 59 59 3 64 102 102 0 0 145 145 0 0 188 188 2 64 231 231 0 0 
17 17 0 0 60 60 0 0 103 103 3 8 146 146 0 0 189 189 1 64 232 232 0 0 
18 18 1 253 61 61 0 0 104 104 2 247 147 147 0 0 190 190 0 0 233 233 0 0 
19 19 3 254 62 62 0 0 105 105 0 0 148 148 0 0 191 191 5 191 234 234 4 1 
20 20 0 0 63 63 0 0 106 106 0 0 149 149 0 0 192 192 0 0 235 235 0 0 
21 21 4 254 64 64 5 64 107 107 0 0 150 150 0 0 193 193 0 0 236 236 3 1 
22 22 0 0 65 65 0 0 108 108 0 0 151 151 2 8 194 194 0 0 237 237 1 2 
23 23 0 0 66 66 1 191 109 109 0 0 152 152 3 247 195 195 0 0 238 238 0 0 
24 24 0 0 67 67 2 191 110 110 0 0 153 153 0 0 196 196 3 191 239 239 5 239 
25 25 0 0 68 68 0 0 111 111 1 16 154 154 0 0 197 197 0 0 240 240 0 0 
26 26 2 253 69 69 4 191 112 112 0 0 155 155 0 0 198 198 0 0 241 241 0 0 
27 27 0 0 70 70 0 0 113 113 0 0 156 156 0 0 199 199 0 0 242 242 2 1 
28 28 0 0 71 71 0 0 114 114 0 0 157 157 3 32 200 200 0 0 243 243 0 0 
29 29 0 0 72 72 1 247 115 115 0 0 158 158 0 0 201 201 0 0 244 244 0 0 
30 30 0 0 73 73 0 0 116 116 0 0 159 159 0 0 202 202 0 0 245 245 0 0 
31 31 0 0 74 74 0 0 117 117 4 128 160 160 0 0 203 203 2 4 246 246 1 1 
32 32 5 32 75 75 0 0 118 118 3 128 161 161 2 223 204 204 0 0 247 247 5 247 
33 33 1 223 76 76 3 251 119 119 0 0 162 162 4 223 205 205 0 0 248 248 0 0 
34 34 0 0 77 77 0 0 120 120 0 0 163 163 0 0 206 206 3 16 249 249 0 0 
35 35 0 0 78 78 0 0 121 121 2 128 164 164 0 0 207 207 0 0 250 250 0 0 
36 36 1 251 79 79 0 0 122 122 0 0 165 165 0 0 208 208 2 239 251 251 5 251 
37 37 0 0 80 80 0 0 123 123 1 128 166 166 0 0 209 209 0 0 252 252 0 0 
38 38 3 253 81 81 4 239 124 124 0 0 167 167 0 0 210 210 0 0 253 253 5 253 
39 39 0 0 82 82 0 0 125 125 0 0 168 168 4 247 211 211 0 0 254 254 5 254 
40 40 0 0 83 83 0 0 126 126 0 0 169 169 0 0 212 212 0 0     
41 41 0 0 84 84 4 251 127 127 5 127 170 170 0 0 213 213 4 2     
42 42 4 253 85 85 0 0 128 128 5 128 171 171 4 4 214 214 0 0     
43 43 0 0 86 86 0 0 129 129 0 0 172 172 0 0 215 215 0 0     

 

 

 Fig. 1. Bit-width of one ST entry. 
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4

5 mod 255 108 72 mod 255 36
1

( ) ( )i i
      i

S C B B  

after which it will conclude that the first byte is in error (Table 
IV). As a result, it will execute the operation 

1 1 (mod 255) 173 251(mod 255) 169.    B B E  

Scenario 2: Assume now that the 10th, 11th and 12th bits 
are flipped. In that case, the codeword will have the following 
form: y = (B1, B2, B3, B4, B5) = (101010012, 001010012, 
101000102, 101010102, 010010002) = (169, 41, 162, 170, 72). 
As in the previous case, the decoder will perform the operation 

4

5 mod 255 32 72 mod 255 215
1

( ) ( )i i
      i

S C B B  

after which it will conclude that an uncorrectable error has 
occurred (Table IV). As a result, it will declare a decoding 
failure. 

Scenario 3: Suppose that the 17th and 18th bits are flipped. 
In that case, the codeword will have the form: y = (B1, B2, B3, 
B4, B5) = (101010012, 110010012, 011000102, 101010102, 
010010002) = (169, 201, 98, 170, 72). Now, after calculating 

4

5 mod 255 131 72 mod 255 59
1

( ) ( )i i
      i

S C B B  

the decoder will conclude that the error has occurred within 
the third byte. As a result, it will perform the operation 

3 3 (mod 255) 98 64 (mod 255) 162.    B B E  

Scenario 4: Finally, assume that the 19th, 20th and 21th 
bits are flipped. In that case, the readout codeword will have 
the form: y = (B1, B2, B3, B4, B5) = (101010012, 110010012, 
100110102, 101010102, 010010002) = (169, 201, 154, 170, 
72). As in the previous case, after calculating 

4

5 mod 255 175 72 mod 255 103
1

( ) ( )i i
      i

S C B B  

the decoder will conclude that the error has occurred within 
the third byte. As a result, it will execute the operation 

3 3 (mod 255) 154 8 (mod 255) 162.    B B E  

From the last two scenarios we see that the decoder can 
correct byte errors having the same integer values as single 
errors. In other words, in addition to correcting single errors, 
the decoder can correct 50% of double adjacent (DA) errors, 
25% of triple adjacent errors and so on. 

IV. EVALUATION AND APPLICATION IN DDR5 SYSTEMS 

A. Evaluation and Implementation Strategy 

As mentioned in Section I, there are many codes that can 
correct single errors and detect adjacent errors. However, only 
two of them belong to a class of single error correcting and l-
bit burst error detecting (SEC-BlED) codes. The first codes are 
obtained by modifying the OLS codes [10], while the second 
ones are designed to be optimal in terms of redundancy [11]. 
For this reason, in the following, we will focus only on the 
codes from [11], and compare them with the proposed codes. 

At the outset, let us analyze the redundancy of both codes. 
According to [11], the optimal linear SEC-BlED codes have 
parameters [l · (2r-l – 1), l · (2r-l – 1) – r], where l ≥ 3. In contrast, 
in Section II, we have seen that integer SEC-Bl/bED codes are 
characterized by the parameters (kb   +   b, k b). If we combine 
this with the data given in Tables I-III, we easily come to the 
conclusion that the proposed codes require 1 to 2 check bits 

more than the linear SEC-BlED codes (Table V). Besides this, 
in Section II we have seen that the proposed codes can detect 
l/b burst errors, while the codes from [11] can detect all l-bit 
burst errors, including those affecting two adjacent bytes. 

Although the mentioned drawbacks may seem important, 
from the standpoint of potential application in DDR5 systems, 
they are practically irrelevant. The reason for this lies in the 
architectural organization of the ECC DDR5 memory module. 
Namely, it is known that this module has two independent 
channels, each of which is 40 bits wide (32 data bits + 8 ECC 
bits) [18] (Fig. 2). This means that, in both channels, four 
chips are used to hold user data, while the fifth chip stores the 
check bits of the ECC. From this it is easy to conclude that 
both, the (40, 32) linear SEC-B4ED code and the (40, 32) 
integer SEC-B3/8ED code, could be used in DDR5 systems. 
The main advantage of the (40, 32) linear SEC-B4ED code is 
that it guarantees detection of all bursts of length up to four 
bits (in future DDR5 systems these errors will be limited to 8-
bit bytes, since DRAM chips are physically separated and 
independent). On the other hand, the advantage of the (40, 32) 
integer SEC-B3/8ED code is that it can correct some additional 
byte errors, such as 50% of all DA errors. 

However, the most important advantage of the proposed 
codes is their ability to run fast on modern processors. This 
feature does not have any linear code, including [13]. On the 
other hand, existing integer ECCs [14]-[17] have the potential 
to be implemented fast in software, but do not meet the criteria 
for use in DDR5 systems (they have either high redundancy 
[14], [16], [17], or weak error control capabilities [15]). With 
all this in mind, below we will consider how the proposed 
codes could be used to improve the reliability of the future 
DDR5 system. In this regard, suppose that we want to improve 
the reliability of the memory system of an eight-core processor 
that has four integer units per core (IU1, IU2, IU3 and IU4) and 
that supports four DDR5 ECC memory modules. Considering 

TABLE V 

CHECK-BIT LENGTHS OF THE OPTIMAL LINEAR SEC-BlED CODES AND 

PROPOSED CODES. 

Codes 
Data word length (bits) 

8 16 32 64 128 256 512 

Codes from [11] 
l = 3 6 7 7 8 9 10 11 
l = 4 7 7 8 9 10 11 12 

Proposed codes 
l = 3 8 8 8 9 10 11 12 
l = 4 8 8 10 10 11 12 13 

 

   

Fig. 2. Block diagram of an eight-core server processor supporting one DDR5 
ECC memory module. 
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that the DRAM access latency has not changed significantly 
over the last decade [19], we can assume that this processor 
has the following specifications [20], [21]: 

1) clock cycle: 3.3 ·109 Hz, 
2) integer addition latency: 1 clock cycle, 
3) integer multiplication latency: 3 clock cycles, 
4) modulo reduction latency: 1 clock cycle, 
5) comparison operation latency: 1 clock cycle, 
6) L1 cache (64 KB) access latency: 4 clock cycles, 
7) L2 cache (1 MB) access latency: 14 clock cycles, 
8) L3 cache (11 MB) access latency: 34 clock cycles, 
9) DRAM (32 GB) access latency: 100-150 clock cycles. 

Suppose now that eight integer (40, 32) SEC-B3/8ED codes are 
used to encode 32 data bytes (B1, B2, ..., B32). In addition, 
suppose the STs (Table IV) are placed in all L1 caches, and 
that four registers within each core store the coefficients C1 =  
9, C2 = 13, C3 = 19, and C4 = 21 [note that one ST occupies 

2 2 2 1 )2( +b + log k     b ≈ 0.6 KB of memory]. In that case, 

each IU1 will perform the following operations: 

   Core 1 (IU1) 

     
4

33
1

(mod 255)i i


 
i

B C B                                                                                                                                                                                                                                                                                                                                                                                                                                                                       (6) 

   Core 2 (IU1) 

      

4

34 +4
1

(mod 255)i i


 
i

B C B                                                                                                                                                                                                                                                                                                                                                                                                                                               (7) 

             
  

   Core 8 (IU1) 

      

4

40 +28
1

(mod 255)i i


 
i

B C B                                                                                                                                                                                                                                                                                                                                                                                                                                   (8) 

After finishing this task, the processor will generate the 320-
bit super codeword [x = (B1, B2, ..., B32,..., B40)], which will 
then be stored into the DRAM memory. 

Suppose now that the DRAM controller reads the super 
codeword from the DRAM memory and then passes it on to 
the processor. In that case, each IU1 will compute the value of 
the corresponding syndrome: 

   Core 1 (IU1) 

     
4

1 33
1

(mod 255)i i


  
i

S C B B                                                                                                                                                                                                                                                                                                                                                                                               (9) 

   Core 2 (IU1) 

      

4

2 +4 34
1

(mod 255)i i


  
i

S C B B                                                                                                                                                                                                                                                                                                                                               (10) 

             
  

   Core 8 (IU1) 

      

4

8 +28 40
1

(mod 255)i i


  
i

S C B B                                                                                                                                                                                                                                                                                                                                       (11) 

If the u syndromes (1 ≤ u ≤ 8) are different from zero, the IU1s 
will accesses (in parallel) to the L1 caches and read out the 
corresponding entries from the STs. If any of these entries has 
the form [S, 0, 0], the processor will declare a decoding 
failure. Otherwise, the corresponding IU1(s) will perform the 
operation(s) Bi = Bi + E (mod 255), after which the processor 
will accept the super codeword as error-free. 

B. Analysis and Discussion 

From the above, it can be seen that the E/D procedures are 
highly parallelized. This significantly reduces the number of 
clock cycles needed to process DRAM bits. In particular, to 
generate eight check-bytes, the processor needs TEN = 16 clock 
cycles (4 integer multiplications, 3 integer additions and 1 
modulo reduction), which is only 2 cycles greater than the L2 
cache access latency. The decoding procedure, on the other 
hand, is more complicated than the encoding one and, thus, 
more time-consuming. The first step in decoding is to generate 
eight syndromes. For that purpose, the processor needs T1 = 
17 clock cycles (4 integer multiplications, 3 integer additions, 
1 integer subtraction and 1 modulo reduction). In the next 
step, the processor will take T2 = 1 clock cycle to check if all 
the syndromes are equal to zero (1 comparison operation). If 
this is not the case, and if the corresponding ST entries are not 
of the form [S, 0, 0], the processor will spend T3 = 7 clock 
cycles (1 access to the L1 cache, 1 comparison operation, 1 
integer addition and 1 modulo reduction) to correct the errors. 
So overall, the processor needs TDE = T1 + T2 + T3 = 25 clock 
cycles to decode the super codeword. Although this time is 
more than 50 percent longer than the encoding time, it is still 
negligible. This can be best seen from the fact that the DRAM 
access latency is 4 to 6 times greater than the time needed for 
decoding. 

On the other hand, it should be borne in mind that the 
above example represents only one possible application of the 
proposed codes. So, for instance, if the processor supports 
eight DDR5 ECC memory modules (the maximum number of 
memory modules allowed by the DDR5 standard [18]) one 
needs to use sixteen integer (40, 32) SEC-B3/8ED codes. Then 
the E/D operations will be performed (in parallel) by the IU1s 
and IU2s, which means that the 640-bit super codeword will be 
encoded and decoded in 16 and 29 clock cycles, respectively. 
The increased decoding latency of four clock cycles is a 
consequence of the fact that two threads share the same L1 
cache (one thread must wait for another to get the ECD). 
However, even then, the decoding latency will be 5 clock 
cycles less than the L3 cache access latency. At the end, it 
should be noted that the use of sixteen IUs (two IUs per core) 
for E/D purposes cannot be considered as a burden for the 
processor, since each core has four IUs and at least two units 
for floating point calculations [20]. 

V. CONCLUSION 

This paper has presented a class of integer codes that are 
suitable for use in future DDR5 systems. We have shown that 
the presented codes have two important characteristics: first, 
they can correct single errors and detect burst errors within a 
byte, and second, they use integer and lookup table operations 
to encode/decode data bits. Thanks to these, the presented 
codes have the potential to be implemented in software. To 
further confirm this, we have performed a theoretical analysis 
in the case of an eight-core processor supporting four DDR5 
ECC memory modules. The obtained results have shown that 
the time penalty for using eight integer (40, 32) SEC-B3/8ED 

codes is 25 clock cycles. It has been also indirectly shown that 
these results are not final, i.e. the time penalty can be further 
reduced by using faster and/or more powerful processors. 
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