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Abstract
Radio frequency driven plasma jets are compact plasma sources which are used in many
advanced fields such as surface engineering or biomedicine. The MMWICP (miniature micro
wave ICP) is a particular variant of that device class. Unlike other plasma jets which employ
capacitive coupling, the MMWICP uses the induction principle. The jet is integrated into a
miniature cavity structure which realizes an LC-resonator with a high quality factor. When
excited at its resonance frequency, the resonator develops a high internal current
which—transferred to the plasma via induction—provides an efficient source of RF power.
This work presents a theoretical model of the MMWICP. The possible operation points of the
device are analyzed. Two different regimes can be identified, the capacitive E-mode with a
plasma density of ne ≈ 5 × 1017m−3, and the inductive H-mode with densities of
ne � 1019m−3. The E to H transition shows a pronounced hysteresis behavior.
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(Some figures may appear in colour only in the online journal)

1. Introduction

Plasma processes can be classified into ‘direct’ and ‘remote’
[1]. In direct plasma processes, the generation and application
of the plasma are co-located: a work-piece is introduced into
a plasma chamber and processed therein. In remote plasma
processes, plasma generation and plasma application are spa-
tially separated. In the source, the plasma is only generated;
it emerges from there as a stream of energetic particles that
strikes the object to be treated. Remote plasma processes
have significant advantages: the sources are relatively eco-
nomic, quite small, and can be handled very flexibly. They can
be employed in a wide pressure range: low pressure (about
10–103Pa) is of interest, e.g., for plasma enhanced thin film
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deposition; atmospheric pressure (105Pa) allows medical and
environmental applications.

Among the sources suitable for remote plasma processes,
radio frequency driven (RF) plasma jets play a particularly
important role [2–6]. They are usually operated in a capacitive
mode: the RF power is applied to a set of co-planar or co-axial
electrodes which results in a strong electric field in the inte-
rior of the jet. If the field strength exceeds the gas breakdown
value, the avalanche effects sets in and the discharge ignites.
The emerging plasma organizes itself into a quasi-neutral bulk
and strongly electron depleted boundary sheaths.

Capacitive coupling enables plasma jets with a simple
structure and robust ignition behavior. However, the opera-
tion principle has one serious disadvantage: the RF power is
fed through the boundary sheaths which are hence modulated,
become wider, and, acting as ‘rectifyers’, develop a higher
voltage drop. This voltage, in turn, accelerates the positive ions
which then strike the electrodes with high kinetic energy. As
the power increases, more and more energy is channeled into

0963-0252/20/065018+9$33.00 1 © 2020 The Author(s). Published by IOP Publishing Ltd Printed in the UK

https://doi.org/10.1088/1361-6595/ab9483
https://orcid.org/0000-0002-8062-896X
https://orcid.org/0000-0001-9472-1041
https://orcid.org/0000-0002-1652-1287
https://orcid.org/0000-0002-2581-9894
mailto:Michael.Klute@ruhr-uni-bochum.de
http://crossmark.crossref.org/dialog/?doi=10.1088/1361-6595/ab9483&domain=pdf&date_stamp=2020-6-29
https://creativecommons.org/licenses/by/4.0/


Plasma Sources Sci. Technol. 29 (2020) 065018 M Klute et al

the ion component. This limits the achievable plasma density
and causes strong erosion and heating of the electrodes, even
the ignition of parasitic arcs.

An alternative to capacitive coupling is inductive coupling
[7]. A coil situated outside of the plasma chamber is driven
by the RF power and creates a time varying magnetic field.
This magnetic field induces an electric field, which then drives
a strong current in the plasma. Provided the configuration is
sufficiently symmetrical, the current is parallel to the sheaths;
modulation and increased sheath voltage are avoided. A larger
fraction of the supplied RF power is channeled into the elec-
tron component, which leads to a higher plasma density, and a
smaller fraction into the ion component, which reduces elec-
trode erosion and heating. Inductively coupled plasmas (ICPs)
have found use in many different areas [8–12].

Attempts have been made to realize the principle of induc-
tive coupling also for plasma jets. An early example is the
induction-coupled plasma torch [13]. This was, however, a rel-
atively large device which generated a plasma in thermal equi-
librium. Research on small scale ICP jets was less sucessful
[14–16]: it was not clear whether the inductive ‘H-mode’ was
reached or just a parasitic ‘E-mode’ caused by the capacitive
coupling of the RF voltage at the coil. The underlying problem
can be understood in terms of the following scaling law (after
[7]) which clearly favors sources of large size. For an ICP with
chamber height H ≈ radius R, the absorbed power Pabs is a
function of the coil winding number N, the driving current I,
the plasma conductivity σeff , and the skindepth λs:

Pabs =

{
N2I2R3/σeffλ

4
s forλs � R

N2I2/σeffλs forλs � R.
(1)

It is apparent that ICPs can only be operated efficiently if the
skindepth is smaller than the chamber dimension R, or at least
comparable. Since λs scales with the electron density n−1/2

e ,
this requires a high level of absorbed power Pabs. The con-
ductivity σeff is not independent but a function of the gas
composition, the pressure, the temperature, and the electron
density. Increasing the coil winding number N is not helpful;
it increases the inductance of the coil, amplifies the RF volt-
age drop, and favors the parasitic E-mode. The only available
option is to provide a sufficiently high coil current I. This is not
an easy task: because of the low equivalent plasma impedance,
the required values are immense.

Porteanu et al found a solution [17]: their novel MMWICP
(miniature microwave ICP) integrates the jet into a structure
that acts as an LC resonator with a high quality factor Q.
When excited at its resonance, the circuit effectively realizes
an impedance transformation; the coils carry an RF current that
is much higher than the driving current from the source. Ref-
erence [17] and two follow-up studies [18, 19] demonstrated
the feasibility of the concept and showed that the H-mode with
high plasma density can indeed be achieved.

The purpose of this research is to define and analyze a
mathematical model of the MMWICP. Section 2 will pro-
vide a detailed description of the prototype which is shown
in figures 1 and 2. Section 3 gives an analytical model of the
electromagnetic field and the power absorption; section 4 pro-

vides a global plasma model. Section 5 couples these models
self-consistently for argon at a pressure of p = 100Pa and a
gas temperature of Tg = 800K and studies the operation prin-
ciples of the MMWICP. The paper ends with a summary and
discussion.

2. The demonstrator and its idealization

A vizualization of the jet demonstrator is shown in figure 1;
figure 2 depicts its cross section. The device is based on a block
of copper with a width of W = 34 mm, a height of H = 10 mm,
and a depth of L = 8 mm [17]. It realizes a double jet with two
parallel plasma discharges and two separate plasma effluents.
Two parallel boreholes of R = 3.5 mm radius form cavities
which are connected by a milled planar slit of Ls = 11 mm
length and ds = 0.22 mm width. Two dielectric tubes with a
wall thickness of d = 1 mm are passed through the parallel
cavities to conduct the process gas and to house the plasma.
The MMWICP is encapsulated and shielded by a solid 8 mm
thick aluminum housing.

Electrically, the structure can be interpreted as a lumped-
element LC-resonator with a vacuum resonance frequency of
fres = 2.3GHz: the cavities act like coils with a winding num-
ber of one, the slit behaves as a capacitor. A lumped-element
interpretation is possible because the resonance frequency is
well below the frequency of any genuine cavity mode: all rel-
evant dimensions are much smaller than a quarter wavelength
λres/4 = 33 mm.

This study is conducted under the assumption of trans-
lational invariance in the z direction; the resonator is inter-
preted as an L = 8 mm thick slice of a formally infinitely
long device. This simplifies the analysis considerably. For
example, the inductance of the cavities can be calculated as
Lc = μ0πR2/L = 6 nH, the capacitance of the slit as Cs =
ε0LLs/ds = 3.5 pF. The resonance frequency is then fres =
1/2π

√
LcCs/2 = 1.5 GHz. The deviation from the experi-

mental value can be seen as a measure of the modeling error.
The jet is fed by a power supply of Z0 = 50Ω impedance.

A matching network (see figure 3) is realized by two induc-
tive elements. The LL = 8 mm long and 2RL = 0.8 mm thick
conductor that runs in a bore of 2RB = 5 mm to the slit corre-
sponds to an inductance of Lser ≈ 3nH. The second inductance
of Lpar ≈ 0.7nH is realized by a strip conductor connected to
ground. Altogether, the following admittance and impedance
result, where the admittance Yp(ne,ω) of a single plasma-filled
cavity will be derived in the next chapter. The admittance
of the combined system of plasma, resonator and matching
network follows from the lumped element description and is
given by:

Ys(ω, ne) =
1

Zs(ω, ne)
=

1
(2Yp(ne,ω) + iωCres)−1 + iωLser

+
1

iωLpar
. (2)

The complex reflection coefficient is then

Γ =
Zs − Z0

Zs + Z0
=

1 − Z0Ys

1 + Z0Ys
. (3)
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Figure 1. Visualization of the MMWICP plasma jet. Brown represents the resonator made of copper, green the dielectric tube of quartz, and
red the plasma itself.

Figure 2. Cross section and inner dimensions of the resonator, where R represents the radius of the two parallel boreholes, d the wall
thickness of the dielectric tubes, Ls the length, and ds the width of the planar slit. The coordinate system used for calculation is shown on the
left.

3. Electromagnetic model of a single jet

For a electromagnetic model of the cavity interior, a system of
cylindrical coordinates (r,φ, z) in natural orientation is erected
(see figure 2). A concentric three-zone structure is assumed:
the inner zone from r = 0 to r = R − d − δ contains plasma
of a constant electron density ne and carries the zone index
p, the zone from r = R − d − δ to r = R − d is the electron-
depleted sheath (index s), and the zone from r = R − d to
r = R denotes the dielectric tube (index d). The structure is
static; the microwave modulation of the sheath was verified to
be negligible. The magnetic field B and the electric field E are
assumed to be invariant in the z-direction.

However, because of the capacitor gap at φ = 0, there is no
azimuthal symmetry and the fields depend on both r and φ. In
a time-harmonic approach, they are written as follows, where
n ∈ {p, s, d} refers to the zones defined above:

B(n)(r,φ, t) = Re
(
B(n)

z (r,φ) exp(iωt)ez

)
, (4)

E(n)(r,φ, t) = Re
(

E (n)
r (r,φ) exp(iωt)er + E (n)

φ (r,φ) exp(iωt)eφ
)
.

(5)
In plasma, additionally, the charge density ρ and the current
density j are considered:

ρ(r,φ, t) = Re
(
ρ(r,φ) exp(iωt)

)
, (6)

j(r,φ, t) = Re
(

j
r
(r,φ, t) exp(iωt)er + j

φ
(r,φ) exp(iωt)eφ

)
.

(7)
The fields obey the full set of Maxwell equations, with electri-
cal specifications for each zone. In the plasma, the equations
are:

1
μ0

1
r
∂B(p)

z

∂φ
= j

r
+ ε0iωE(p)

r , (8)

− 1
μ0

∂B(p)
z

∂r
= j

φ
+ ε0iωE(p)

φ , (9)

1
r

∂(rE(p)
φ )

∂r
− 1

r
∂E(p)

r

∂φ
= −iωB(p)

z . (10)

The cold plasma model is invoked which contains the equation
of continuity

iωρ +
1
r

∂(r j
r
)

∂r
+

1
r

∂ j
φ

∂φ
= 0, (11)

and the equation of motion, where ωpe is the plasma frequency
and ν the collision rate

iω j
r
= ε0ω

2
peEr − ν j

r
, (12)

iω j
φ
= ε0ω

2
peEφ − ν j

φ
. (13)
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Figure 3. Lumped element representation of the double jet, consisting of the power source with Z0 = 50Ω, the resonator and the plasma
itself. The matching network is included in the resonator. The capacitive coupling is taken into account as an infinite number of LCR-circuits
(for m = 1, 2, . . . . while the inductive coupling is represented as an RL-circuit (m = 0).

With the help of the relative plasma permittivity

εp = 1 −
ω2

pe

ω2 − iων
, (14)

the electric field can be expressed as

E (p)
r =

c2

iωεp

1
r
∂B(p)

z

∂φ
, (15)

E (p)
φ = − c2

iωεp

∂B(p)
z

∂r
. (16)

A second order differential equation for the magnetic field
arises:

− 1
r
∂

∂r
r
∂B(p)

z

∂r
− 1

r2

∂2B(p)
z

∂φ2
=

ω2

c2
εpB(p)

z . (17)

Within the plasma sheath, the Maxwell equations take the
form:

1
μ0

1
r
∂B(s)

z

∂φ
= iωE (s)

r , (18)

− 1
μ0

∂B(s)
z

∂r
= ε0iωE(s)

φ , (19)

1
r

∂(rE(s)
φ )

∂r
− 1

r
∂E(s)

r

∂φ
= −iωB(s)

z , (20)

which leads to

E (s)
r =

c2

riω
∂B(s)

z

∂φ
, (21)

E (s)
φ = − c2

iω
∂B(s)

z

∂r
, (22)

and

− 1
r
∂

∂r
r
∂B(s)

z

∂r
− 1

r2

∂2B(s)
z

∂φ2
=

ω2

c2
B(s)

z . (23)

Within the dielectric, the equations are as follows, with per-
mittivity ε = ε0εr:

1
μ0

1
r
∂B(d)

z

∂φ
= iωε0εrE

(d)
r , (24)

− 1
μ0

∂B(d)
z

∂r
= ε0εriωE (d)

φ , (25)

1
r

∂(rE(d)
φ )

∂r
− 1

r
∂E(d)

r

∂φ
= −iωB(d)

z . (26)

The electric field can be expressed as

E (d)
r =

c2

iωεr

1
r
∂B(d)

z

∂φ
, (27)

E (d)
φ = − c2

iωεr

∂B(d)
z

∂r
. (28)

A second order differential equation for the magnetic field
arises:

− 1
r
∂

∂r
r
∂B(d)

z

∂r
− 1

r2

∂2B(d)
z

∂φ2
=

ω2

c2
εrB

(d)
z . (29)

A the boundaries between the zones, the fields have to ful-
fill certain continuity relations for the tangential components.
Between plasma and sheath, they are

E(p)
φ (R − d − δ,φ) = E (s)

φ (R − d − δ,φ), (30)

B(p)
z (R − d − δ,φ) = B(s)

z (R − d − δ,φ), (31)

and between sheath and dielectric,

E (s)
φ (R − d,φ) = E (d)

φ (R − d,φ), (32)

B(s)
z (R − d,φ) = B(d)

z (R − d,φ). (33)

At r = R, the tangential field E (d)
φ vanishes, as long it is adja-

cent to the resonator walls. For |φ| < arctan(ds/2R) ≈ ds/2R,
however, it is equal to the constant capacitor field u/ds, where
u is the voltage at the gap:

E (d)
φ (R,φ) =

{
0 for |φ| � ds/2R

u/ds for |φ| < ds/2R.
(34)

Considering the specular symmetry of the configuration, the
field equations can be solved by expansion into Fourier cosine
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series. The solutions are as follows, where the Jm and the Ym

are Bessel functions of the first and second kind to order m,
respectively:

B(p)
z (r,φ) = u

∞∑
m=0

C(p)
m Jm

(√
εp

ω

c
r
)

cos(mφ), (35)

B(s)
z (r,φ) = u

∞∑
m=0

(
C(s)

m Jm

(ω
c

r
)
+ D(s)

m Ym

(ω
c

r
))

cos(mφ),

(36)

B(d)
z (r,φ) = u

∞∑
m=0

(
C(d)

m Jm

(√
εr

ω

c
r
)

+ D(d)
m Ym

(√
εr

ω

c
r
))

cos(mφ). (37)

The coefficients C(p)
m , C(s)

m , D(s)
m , C(d)

m , and D(d)
m are determined

by the continuity conditions. This results in the following
system of linear equations:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

0

0
cm

ds

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−Jm(bp) Jm(as) Ym(as) 0 0

− J′m(bp)
√
εp

J′m(as) Y ′
m(as) 0 0

0 −Jm(bs) −Ym(bs) Jm(ad) Ym(ad)

0 −J′m(bs) −Y ′
m(bs)

J′m(ad)√
εr

Y ′
m(ad)√
εr

0 0 0
icJ′m(bd)√

εr

icY ′
m(bd)√
εr

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

C(p)
m

C(s)
m

D(s)
m

C(d)
m

D(d)
m

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(38)

where the constants in the Bessel functions are abbreviations,

bp =
√
εp

ω

c
(R − δ − d), (39)

as =
ω

c
(R − δ − d), (40)

bs =
ω

c
(R − d), (41)

ad =
√
εr

ω

c
(R − d), (42)

bd =
√
εr

ω

c
R, (43)

and the coefficient cm results from the expansion of the peri-
odic rectangle function

cm =

⎧⎪⎨
⎪⎩

1
2π

for m = 0

2R
mπdS

sin

(
mdS

2R

)
for m � 1

. (44)

For every azimuthal mode index m, the system of linear
equation (38) can easily be solved. The resulting expressions
are rather unwieldy but can be represented in a qualitative way,
namely as the lumped element circuit ‘plasma’ of figure 3. Its
subject is the electric current I which flows into the cavity from
the top electrode of the capacitor slit—identical, of course,
because of symmetry, to the current which flows out of the
cavity onto the bottom electrode. Evaluating the discontinuity
condition for the magnetic field B(d)

z at the cavity boundary,

Figure 4. Real part of the complex admittance Y(ω, ne) shown as a
function of ne for a constant frequency ω = 2π × 2.45 GHz. The
dashed line represents the azimuthally symmetric mode m = 0,
while the solid line represents the sum of all the modes.

one can deduce that

I =
L
μ0

B(d)
z (R, 0) = u

L
μ0

∞∑
m=0

C(d)
m Jm (bd) + D(d)

m Ym (bd) . (45)

This result suggests to represent the current I by an infinite
number of parallel branches, each assigned to a mode m with
an admittance

Ym(ω, ne) =
L
μ0

(
C(d)

m Jm (bd) + D(d)
m Ym (bd)

)
. (46)

The mode m = 0 is non-resonant and behaves physically like
an inductor–resistor circuit; the non-symmetric modes m �
1 are resonant and can be represented by LCR series cir-
cuits. (The identification is only qualitative, as the formulas
involve transcendental functions and can only approximately
be mapped to rational expressions.) Note that the ‘inductances’
in the circuits describe both magnetic and electron inertia
effects. The total plasma admittance is shown in figure 4 and
is the sum of the admittances of all branches,

Yp =

∞∑
m=0

Ym(ω, ne), (47)

and the current is

I =
∞∑

m=0

Ym(ω, ne)u = Yp(ω, ne)u. (48)

The equivalent circuit can also represent the electromagnetic
power Pabs that is fed to the jet. Applying Poynting’s theorem,
integrating it over the cavity, and taking into account that the
only non-metallic section of the boundary is the capacitor gap,
we have

1
2

Pabs =
1

4μ0

∫
G

(
E×B∗+E∗×B

)
·df= L u

1
2μ0

Re (Bz(R, 0)) .

(49)
The factor 1/2 on the left reflects that the absorbed power Pabs

is counted for the double jet, while Yp(ω, ne) was calculated for
a single jet. Comparison shows that

1
2

Pabs(ω, ne) =
1
2

Re
(
Yp(ω, ne)

)
u2. (50)

5
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As the impedance transformation network (see figure 3) is
loss-less, the power absorbed in the MMWICP can also be
expressed as with the source voltage of the power source us

as

Pabs(ω, ne) =
1
2

Re (Ys(ω, ne)) u2
s , (51)

Using the reflection coefficient defined above, the absorbed
power can also be written as in terms of the incoming power
P0:

Pabs(ω, ne) =
(
1 − |Γ(ω, ne)|2

)
P0 (52)

4. Plasma model

This section enlists a so-called ‘global model’ to relate the dis-
charge status in a single cavity to the absorbed electromagnetic
power Pabs/2. Global models sacrifice spatial resolution [20].
Instead, they employ the volume-averaged balances of particle
number and energy and amend them by some plausible a priori
assumptions. Here, the effective discharge volume is defined as
the geometric value Vp = π(R − d)2L = 160mm3; this reflects
the assumption that the plasma column boundaries at z = 0 and
z = L are possibly blurred by edge effects but not drastically
shifted. The volume-averaged particle balance is

dne

dt
= Kizngne − h

Am

Vp
vB ne. (53)

The first term on the right describes the particle gain via ioniza-
tion from the ground state. (Stepwise ionization is neglected;
it amounts to less than 20% of the ionization rate [21].) Kiz

is the temperature-dependent ionization rate coefficient and
ng = p/kBTg = 9.1 × 1021m−3 the argon neutral gas density.
We adopt from [7] the form

Kiz(Te) = 2.34×10−14 (Te/eV)0.59 exp(−17.44 eV/Te) m3/s.
(54)

The second term in (53) describes the loss of the plasma
(=electron–ion pairs) to the column mantle of area Am =
2π(R − d)L = 125mm2. We consider only losses in the radial
direction; axial losses at z = 0 and z = L are neglected. (There
are no material boundaries there.) The Bohm speed is denoted
by vB =

√
Te/mi, with the ion mass of argon mi = 40AMU.

The prefactor h, the so-called edge-to-center ratio [7], is cal-
culated with the geometry data and an ion mean free path of
λi = 0.11 mm:

h = 0.80
(
4 + (R − d)/λi

)−1/2
= 0.15. (55)

The second model equation describes the volume-averaged
energy balance of the plasma. (Technically, the quantity con-
sidered as dynamic is the energy of the electron component;
the energy of the ion component is algebraically related and
thus not dynamic; see below.) The power Pabs coupled from
the electromagnetic field to the electrons is balanced by the
action of severa power loss channels in the plasma and at the
mantle. For a concise notation, we define the energy loss rate
per electron as

Rε(Te) =Kizngεiz + Kexngεex

+ Kelng
3me

mn
Te + h

Am

Vp
vB (2Te + eVsh) . (56)

The first term represents losses due to ionization, with the
ionization energy εiz = 15.76eV; the second term accounts
for excitation, the excitation energy is εex = 12.14eV and the
corresponding rate coefficient is

Kex(Te) = 2.48×10−14 (Te/eV)0.33 exp(−12.78 eV/Te) m3/s.
(57)

The third term represents the energy loss via elastic collisions,
the electron–neutral mass ratio is me/mn = 1.37 × 10−5 and
the rate coefficient is

Kel (Te) = 2.336×10−14 (Te/eV)1.609 exp
(
0.0618 ln2(Te/eV)

− 0.1171 ln3(Te/eV)
)

m3/s. (58)

Finally, the kinetic energies carried off by the particles lost
to the mantle are accounted for. For the electrons, assumed
Maxwellian, the ratio of the energy flux to the particle flux
is 2Te. Also, it is considered that the energy eVsh gained by the
ions in the sheath appears as a loss term in electron balance.
A separate ion energy balance is not required; the transit time
of the ion in the sheath is much shorter than the time constants
considered in the global model. The sheath voltage, including
the presheath contribution, is

Vsh(Te) =
Te

2e

(
ln

(
mi

2πme

)
+ 1

)
. (59)

The volume-averaged energy balance can then be written as

d
dt

(
3
2

neTe

)
=

Pabs

2Vp
− Rεne. (60)

5. Characteristics of the system

Coupled together, the models of section 3 and 4 formulate a
system of two nonlinear differential equations for the aver-
aged plasma density ne and the electron temperature Te. With
the dependence of the coefficients on the variables displayed
explicitly, it reads:

dne

dt
= Kiz(Te)ngne − h

Am

Vp

√
Te

mi
ne, (61)

d
dt

(
3
2

neTe

)
=

1
2Vp

Pabs(ω, ne) − Rε(Te)ne. (62)

Of interest are the stationary solutions described by

Kiz(Te)ngne − h
Am

Vp

√
Te

mi
ne = 0, (63)

1
2Vp

Pabs(ω, ne) − Rε(Te)ne = 0. (64)

In equation (63), the plasma density cancels; a numeri-
cal root finding procedure gives an electron temperature of
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Figure 5. Absorbed power Pabs and loss power Ploss (blue line) for
the double jet as functions of ne. Pabs is shown for three different
incident powers P0. The intersections of both curves represent
stationary points of the model; they are stable (and thus possible
operating points) when the Pabs-curve crosses from above.

Te = 2.46eV. The energy loss rate per electron can then be
found as Rε = 2.95 × 107eVs−1, and the equilibrium condi-
tion for the jet model is thus

Pabs(ω, ne) = Ploss(ne) ≡ 2RεVpne = 1.49×10−18 Wm3 ne.
(65)

The structure of this equation invites a graphical interpretation.
In figure 5 shows the absorbed power Pabs(ω, ne) as a func-
tion of ne for various values of the incident microwave power
P0. The second curve is the straight line Ploss(ne) = 2RεVpne.

Figure 6. Stable (solid) and unstable (dashed) stationary points in
the plane P0 (incident power) and ne (plasma density). 1 − |Γ|2
represents the fraction of P0 that is absorbed by the plasma.

The intersections of the curves represent the stationary points
of the model. When Pabs(ω, ne) crosses Ploss(ne) from above,
the stationary point (ne, Te) is stable and represents an operat-
ing point that can be realized. When Pabs(ω, ne) crosses from
below, the stationary point is unstable. This follows from the
stability criterion discussed in the appendix,

∂Pabs

∂ne
< 2RεVp ⇔ Operation point (ne, Te) is stable. (66)

For a given incident power P0, the equilibrium condition
can have more than one solution. Figure 6 shows the system

Figure 7. Electric field lines and field strength in the E-mode at ne ≈ 6 × 1017m−3 and Pabs = 10W. The dielectric tube is shown in light
blue.

Figure 8. Electric field lines and field strength in the H-mode at ne ≈ 1019m−3 and Pabs = 25W. The dielectric tube is shown in light blue.

7
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characteristics in the P0-ne-plane. The stable stationary points
are represented by the solid section, the unstable stationary
points by the dashed section. The thin lines indicate value of
the quantity 1 − |Γ(ω, ne)|2 which measures the fraction of the
incoming power that is absorbed by the plasma.

Two separate regimes can be identified. They operate at
comparable incident power levels, but are of physically differ-
ent character. The first regime has a poor coupling efficiency,
only 6% of the incident power is absorbed, and also a low
plasma density of ne ≈ 6 × 1017m−3. We identify this regime
with the capacitive E-mode: the discharge current is carried
by the asymmetric modes represented by the LCR series cir-
cuits, primarily by the mode m = 1. This interpretation is
corroborated by the field line pattern shown in figure 7.

The second regime has a much better coupling efficiency.
The electron density is a factor of 20 higher and exceeds ne =
1019m−3. We identify this mode with the inductive H-mode,
as the azimuthally symmetric mode m = 0—which makes up
to the non-resonant LR-branch of the lumped element equiv-
alent circuit (see figure 4)—constitutes the dominant contri-
bution. Again, this interpretation is supported by the plot of
the electric field lines shown in figure 8. The field lines are
nearly circular, and the influence of the skin effect is clearly
visible.

From the solution diagram, we can infer that the MMWICP
exhibits a pronounced hysteresis when cycling between the
two discharge regimes. The behavior of the E to H tran-
sition can be observed also in other inductively coupled
plasmas [22].

6. Summary and conclusion

In this work, the miniature microwave ICP (MMWICP), a
microwave driven plasma jet based on the principle of induc-
tive coupling, was investigated via mathematical modeling. An
argon-fed double jet with a pressure of p = 100Pa and a gas
temperature of Tg = 800K was taken as example. Two separate
submodels were formulated. To describe the electromagnetic
fields E and B, the full set of Maxwell’s equations was analyt-
ically solved in the frequency domain by means of an infinite
Fourier series. The solution was cast in the form of a lumped-
element equivalent circuit which included also a model of the
matching network. For the plasma itself, the volume-averaged
balance equations for the particle number and the electron
energy were formulated. The self-consistent coupling of the
two submodels resulted in a system of two nonlinear differen-
tial equations for the volume-averaged plasma density ne and
the electron temperature Te. The stationary points and their sta-
bility were analyzed. Two different operating regimes could
be identified, the capacitive E-mode with a plasma density of
ne ≈ 5 × 1017m−3, and the inductive H-mode with densities
of ne � 1019m−3. The form of the E to H transition indicated
a pronounced hysteresis behavior.

Our modeling results are in good qualitative agreement with
the outcome of technological and experimental investigations
conducted in parallel [18, 19]. This applies in particular to the
existence of different discharge modes, their electron densi-
ties, and their symmetries. A more detailed comparison is, at

this point, not feasible: owing to its drastic simplifications,
the global model presented in this work claim only qualita-
tive, not quantitative validity. Moreover, the process gas here
was argon, while the experiments were conducted in nitrogen.
Future investigations to correct this deficiencies are already
underway.
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Appendix A

This appendix contains a stability analysis of the stationary
points of the MMWICP model. We linearize the dynamic
equations (53) and (60) around the solutions of (63) and
(64) with the following approach for the electron density and
electron temperature

ne(t) →ne (1 + δne(t)), (A1)

Te(t) →Te (1 + δTe(t)). (A2)

Two coupled linear first order differential equations arise. With
the following abbreviations, all evaluated at the stationary
point under consideration,

a12 = −1
2

h
Am

Vp
vB +

∂Kiz

∂Te
ngTe, (A3)

a21 =
2

3Te

(
1

2Vp

∂Pabs

∂ne
− Rε

)
, (A4)

a22 =−2
me

mn

∂

∂Te
(KelTe) ng −

∂Kiz

∂Te
ng

(
2
3
εiz + Te

)

−2
3
∂Kex

∂Te
ngεex − hvB

Am

Vp

(
2 +

1
2

ln

(
mi

2πme

))
,

(A5)
we can cast the dynamic equation as

d
dt

(
δne

δTe

)
=

(
0 a12

a21 a22

)(
δne

δTe

)
. (A6)

The character of the linearized model and the stability of the
stationary point depends on the eigenvalues λ of the matrix A.
If both eigenvalues are negative, the linearized solutions decay
and the stationary point is stable. If one of them is positive, the
linearized solutions grow and the stationary point is unstable.
Explicitly, the eigenvalues read

λ1,2 =
1
2

a22 ±
√

a12a21 +
1
4

a2
22. (A7)

Evidently, the coefficient a22 is always negative. Both eigen-
values are thus negative when the square root term is smaller
than |a22|, i.e., when a12a21 is negative. As a12 is always pos-
itive, the decision depends on the sign of a21. This shows the

8
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validity of the criterion used above: the stationary points of the
jet model are stable under the condition

∂Pabs

∂ne
< 2VpRε. (A8)
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