Polymer electrolyte fuel cells (PEFC) gained a lot of interest in recent years as a potential solution for an eco-friendly energy. Proton exchange membranes (PEM) are one of the main components of PEFCs and require mechanical and chemical stability to ensure high proton conductivity and effective separation of anode and cathode under challenging conditions. Best commercial membranes made from sulfonated fluoropolymers, such as Nafion®, are rather expensive. To improve fuel cell performance at a lower cost, 2-acrylamido-2-methylpropane sulfonic acid (AMPS) was investigated recently. As polyAMPS excessively swells or even dissolves in water, we investigated crosslinkable copolymers consisting of AMPS for proton conductivity, a perfluorinated acrylate (PFA) to mimic Nafion and glycidyl methacrylate for crosslinking. Since we combine very polar and very apolar monomers in the polymer chain we investigated the phase separation and orientation of proton conducting channels in the electrical field.

First results of conductivity measurement and orientation will be presented.

The research leading to these results has received funding from the European Community’s FP7- NMP Programme, under the Project Acronym MultiPlat with Grant Agreement: N 228943 and the Austrian Federal Ministry of Science and Research. The authors would like to thank 3M for PP membrane samples and Ciba SC, Huntsman, Ivoclar Vivadent and Sartomer for samples of photoinitiator and crosslinker.