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Abstract: This paper presents a new method for stochastic measurement of wind power 

and energy. Compared to the existing approaches, this method has two advantages: first, it 

is much simpler and cheaper to implement, and second, it can be easily integrated with cup 

anemometers. In this way, it is possible to construct a low-cost mobile device capable of 

measuring wind power and energy. In order to prove the validity of our method, we have 

conducted several laboratory experiments. The obtained results have shown that, over the 

time interval of 100 seconds, wind power and energy can be measured with an accuracy of 

0.09 %. 

Keywords: Stochastic measurements, two-bit A/D conversion, anemometer with cups, wind 

power, wind energy. 

1. Introduction 
 

With gradual exhaustion of fossil fuels, researchers are increasingly focusing on new energy 

sources. Among them, the wind power is particularly valued due to its clean pollution and wide 

distribution of resources. However, the main problem of using wind as a source of power is 

unstable output power. The stochastic and unpredictable nature of wind may cause significant 

fluctuations in voltage and frequency, and thus, interference and problems with the grid. So, 
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before constructing a wind farm, it is necessary to perform measurements of wind speed. Based 

on them, it is possible to calculate wind power and its variation over time. 

Unfortunately, today there is no cheap way to measure wind power and energy. Most 

measurements are done using expensive instruments such as SODAR and LIDAR [1], [2]. Apart 

from being expensive, these instruments are not easy to transport, which further complicates 

their use. On the other hand, there are numerous devices for measuring wind speed, such as 

anemometers with cups [3] and ultrasonic anemometers [4]. These devices generate signals 

(analog [3] or digital [4]) whose amplitudes are proportional to the wind speed, and hence, they 

can be used as a basis for designing wind power (energy) meters. This possibility arises from the 

fact that wind power (energy) is cubically related to wind speed [1]. 

Having this in mind, in this paper, we present a simple and cheap approach to measure wind 

power and energy. The key idea behind this approach is to use stochastic digital measurement 

method (SDMM) [5]-[13] to process the data generated by anemometer with cups. Unlike the 

standard sampling method [14], the SDMM can be realized using two-bit A/D converters. 

Hence, its integration with an anemometer represents a natural step towards designing a low-

cost mobile device capable of measuring wind power and energy. 

The organization of this paper is as follows: Section 2 deals with the background of 

stochastic measurement of wind power and energy. Theoretical analysis and experimental 

results are given in Section 3, while Section 4 concludes the paper. For ease of reading, a list of 

notations is given in Table 1. 

II. Stochastic Measurement of Wind Power 

A. Wind Speed and Wind Power 

From physics it is known that the kinetic energy of an object depends on its speed and mass. 

In other words, it is calculated as (1/2)·m·v2, where v is speed and m is the mass. In the case of 

wind, m is obtained from the product of air density ρ and its volume. As the air is constantly in 

motion, the volume is calculated by multiplying the wind’s speed by the area A through which it 

passes during a time period t. This leads to the equations 

Table 1. Notations used in this paper. 

Symbol 

93 

197 

Meaning 

2359 fi(t) Input signal in the i-th channel 

 i  Result of A/D conversion in the i-th channel 

2g Quantum of a two-bit A/D converter 

T Measurement interval 

N Number of samples in the measurement interval T 
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2
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(2) 

where Pw and Ew denote wind power and energy, respectively. Unfortunately, the electrical 

power and energy, extracted from wind generators, are quite lower than those given by (1)-(2). 

More precisely, they are equal to 

31

2
      e p w pP C P A C v                                                                                                                       (3) 

31

2
       e p w pE C E A C v t                                                                                                                                                 (4) 

where Cp denotes the power coefficient of a wind turbine. Its maximum value is equal to 0.593, 

and it is called the Betz limit [1]. In practice, however, the value of the Cp  is substantially lower 

and varies between 0.35 and 0.45. 

B. Generalization of a Two-bit SDMM 

As already stated, the SDMM can be realized using two-bit A/D converters. Such an 

approach is possible only if we add a dither noise to the input signal before its digitalization. For 

instance, if we want to measure the mean value of the signal f1(t) we need to add a dither noise 

h1 (Fig. 1). In that case, the output value  will be equal to [12] 

(1)



      1 1
1 0

1 1
( ) ( )

TN

i

i f t dt


On the other hand, since the error is defined by 1(1) ( )e f t   , the variance of the average error 

will be equal to 
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 
 
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1 1

0 0

1 1
( ) ( ) .
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e

g
f t dt f t dt

N T T                                                                                                                                                                                                                                                                                                                                                                                                                                                                       (6) 

Similarly, if one wants to measure a product of two signals f1(t) and f2(t) it is necessary to add 

two uncorrelated dithers h1 and h2  (Fig. 2). In that case, it will hold that [5] 

(2)



        1 2 1 2
1 0

1 1
( ) ( ) ( ) ( )

TN

i

i i f t f t dt
N T                                                                                                                                                                                                                                                                                                                   (7) 

On the contrary to the previous scenario, in this one, the error is defined by
1 2(2) ( ) ( ).e f t f t     

As a result, the average error variance will be equal to  

2
(2) =

 
      
 
 

 
2

2 2 2
1 2 1 2

0 0

( )1 1
( ) ( ) ( ) ( )

T T

e

g
f t f t dt f t f t dt

N T T                                                                                                                                                                                                       (8) 

In general, it can be shown (Appendix A) that the expressions 

( )k



         1 2 1 2
1 0

1 1
( ) ( ) ( ) ( ) ( ) ( )

TN

k k
i

i i i f t f t f t dt
N T                                                                                                                                                                                   

(9) 

( ) =k
 
      
 
 

 
2 2 2 2

1 2 1 2

0 0

(2 )1 1
( ) ( ) ( ) ( ) ( ) ( )

T Tk

k ke

g
f t f t f t dt f t f t f t dt

N T T                                                                                                                                         (10) 

are valid for any k ≥ 1. From this, it is easy to see that a two-bit SDMM can be used to measure 

a product of k input signals. In this paper, we will restrict ourselves to the case when k = 3. 

 

Fig. 1. Block diagram of the device for measuring the mean value of the input signal. 
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C. Instrument Scheme 

In the Section II-A it is shown that the wind power (energy) is cubically related to the speed 

of the wind. In the context of the aforementioned, one might think that the scheme from Fig. 3. 

is suitable for measuring wind power and energy. The only condition, in this regard, is that the 

signals h1, h2  and h3 are mutually uncorrelated (Fig. 3). 

    

Fig. 2. Block diagram of the device for measuring a product of two input signals. 

 

Fig. 3. Block diagram of the device for measuring a product of three input signals. 
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However, in this particular case, the above scheme is not applicable. The reason is that an 

anemometer with cups generates a sinusoid whose amplitude and frequency are proportional to 

the wind speed. Hence, by applying the above scheme, the output value would be equal to zero 

(the mean value of a sinusoid raised to an odd power greater than 2 is equal to zero). To avoid 

such scenario we will measure the absolute value of a sinusoid raised to the third power. For that 

purpose, it can be used the scheme shown in Fig. 4.  

The first thing we notice from the above scheme is that is that there is only one input 

channel. Such solution is possible due to very low frequency of the input signal u(t). Namely, if 

the input signal has a low frequency and if it is digitized using a fast A/D converter, several 

adjacent samples of u(t) will have an identical or nearly identical values (depending on the 

sampling rate). In our case, the multiplication of three adjacent samples (within one group) is 

equivalent to the digitization of a sinusoid raised to the third power. If this process is performed 

using a two-bit A/D converter, the output samples will have three values: 10 ("+1"), 00 ("0") and 

01 ("-1") (the output 11 is forbidden) [9]. From this, it is easy to conclude that the two-input OR 

gate has the role to convert "negative" samples into the "positive" ones (Fig. 4). Also, we see 

that the up-counter will increase its value only if three adjacent bits have the value 1. Finally, the 

role of modulo-3 counter is to ensure that the the output samples (bits) are processed in groups 

of three. 

III. Theoretical Analysis and Experimental Verification 

A. Theoretical Analysis 

To make the theoretical analysis comparable with experimental results, we need to consider 

the systematic errors (voltage offsets) caused by the imperfections of the measuring device (Fig. 

4). They can be grouped into two different categories: the errors caused by comparators' offsets 

 

Fig. 4. Block diagram of the device for measuring the absolute value of the input signal 

 raised to the third power. 
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and the error induced by the analog adder. In [11] it was shown that using the cross-switching 

method the first group of errors can be suppressed by more than 80 dB. Hence, they become 

negligible. However, as the method from [11] cannot suppress (eliminate) the error induced by 

the analog adder (Fig. 5), it is necessary to analyze its impact on the measurement result. 

Accordingly, let us suppose that ∆0 denotes the voltage offset of the analog adder and that the 

input signal has the form u(t) = U·sin(ωt), where 0.5 V ≤ U ≤ 4.5 V. In that case, the output 

value
3

u will be equal to 

3 3 3
(U sin 



       1 0
1 0

1 1
( ) )

TN

i

u i t dt
N T                                                                                                                                                                                                                                                                                                   (11) 

i.e. 

3 3 2 2 2 3 3

0 0 0

0

1
3 ( ) 3 ( ) ( )

T

u U sin t U sin t U sin t dt
T

                                                                       (12) 

Considering that |∆0| is in the range of a few mV [15], the above equality reduces to 

3 2 2

0

0

1
( ) 3 ( )

T

u U sin t U sin t dt
T

                                                                                                                                                                                  (13) 

Now, if ∆0 
> 0, it will hold that  

/2
3 2 2 2 2

0 0

0 /2

1 1
( ) [3 ( )] ( ) [ 3 ( )]

T T

T

u U sin t U sin t dt U sin t U sin t dt
T T

                

            

(14) 

i.e. 
/2

3 3 3 3

0

2 4
( )

3

T

u U sin t dt U
T




                                 (15) 

It is easy to show that the same result holds for ∆0 
< 0. In other words, ∆0 has the same value in 

both half-periods, but an opposite sign. Hence, it can be concluded that the voltage offset of the 

analog adder has no impact on the measurement result. Bearing this in mind, let us determine the 

variance of the average error e. According to (10), it has the form  

                                                                                             

Fig. 5. Structure of the analog adder. 



8 

 

3
3 62

0 0

1 (2 ) 1
(3) = ( ) ( )

T T

e

g
U sin t dt U sin t dt

N T T
  

 
     
 

                (16) 

i.e. 

3
3 62

0 0

1 (2 ) 1
(3) = ( ) ( )

T T

e

g
U sin t dt U sin t dt

N T T
  

 
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To calculate the above integrals, we can use the equalities [16] 

3
3

3

cos x
sin x dx cos x           

3
6 3 1 2 3 4

2 2
16 16 16 3 16 4

x sin x sin x
sin x dx sin x sin x x

   
            

  
  

Based on them, it is easy to show that 

3
2 3 330 4
(3) = 32

3 32e

U
g U

N




 

 
    
 

                                                  (18) 

B. Laboratory Experiments 

To validate the above theory, we have conducted several laboratory experiments. For that 

purpose, two instruments were used: the prototype instrument for measuring the RMS value 

(PIM-RMS) of the sine voltage (Fig. 6a) and the phase angle standard (PAS) (Fig. 6b) [17].  

The first instrument operates at a sampling frequency of 0.1 MHz and digitizes the input 

signal into a two-bit output stream. For that purpose, it also uses the method for suppressing the 

errors caused by comparators' offsets [11]. In this way, it is possible to measure the mean value 

of the square of the sine voltage with accuracy better than γ = 80 ppm [8]. 

The second instrument has several functional blocks including two-channel digital function 

generator. In our experiments, this block was used as a signal generator. Its main characteristics 

are as follows: 

     

                                               (a)                                                                     (b) 

Fig. 6. Photos of the instruments used in laboratory experiments: 

(a) the PIM-RMS and (b) the PAS. 
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1) frequency range 10 Hz–10 kHz, 

2) voltage range 0–120 V, 

3) current range 0–6 A, 

4) output power: voltage channel 25 W, current channel 100 W, 

6) phase angle: 0º–360º, 

7) phase angle resolution: equivalent to time delay of 5 ns in high-speed operation, 

8) stability of signal generation: a few ppm of full scale per year, 

9) accuracy of signal generation: 12 ppm of full scale. 

The experiments were started by generating sine wave voltages with frequencies 10 Hz and 

20 Hz amplitudes up to 4.5 V. The PAS was connected at the input of the PIM-RMS, whereas 

the PIM-RMS was connected to the PC via RS-232 serial link. The sampling frequency was set 

to 25 kHz and each experiment lasted 100 seconds. The groups of three adjacent samples were 

treated as individual samples, meaning that 25·103·100/3 = 833333 samples per one experiment 

was processed. The obtained results are shown in Table 2.  

The first two columns show the parameters of the signals generated by the PAS. Exact and  

measured values of
3

u are displayed in the third and fourth columns, respectively. The fifth 

column shows the results of the estimated absolute error of measuring
3

u using the PIM-RMS. 
 

It can be observed that this error is completely deterministic (Appendix B). Unlike it, the 

variance of the average error is stochastic and depends on the waveform of the input signal 

(sixth column). The seventh and eight columns, respectively, show the expectable uncertainty of 

measurement (with a coverage factor of k = 2) and the absolute difference between mesured and 

exact results. Finally, the ninth column shows the relative measurement uncertainty. From it, it 

can be seen that the PIM-RMS measures the absolute value of the input signal raised to the third 

Table 2. Results of the laboratory experiments. 

 1 2 3 4 5 6 7 8 9 

 U
 f  3

ex
u  

3

m
u  

3

max
u   e

  3

max
2

e
u     

3 3

m ex
u u  

3 3

3

max

m ex
u u

u



 

 V  Hz  3V  
3V  

3V  
3V  

3V  
3V  %  

1 4.500 20 38.675 38.702 0.00637 0.0505 0.1074 0.027 0.05 

2 4.000 10 27.162 27.150 0.00637 0.0497 0.1057 0.012 0.02 

3 3.500 20 18.197 18.156 0.00637 0.0448 0.0960 0.041 0.08 

4 3.000 10 11.459 11.482 0.00637 0.0379 0.0822 0.023 0.04 

5 2.500 20 6.631 6.636 0.00637 0.0300 0.0664 0.005 0.01 

6 2.000 10 3.395 3.444 0.00637 0.0220 0.0504 0.049 0.09 

7 1.500 20 1.432 1.439 0.00637 0.0145 0.0354 0.007 0.01 

8 1.000 10 0.424 0.403 0.00637 0.0079 0.0222 0.021 0.04 

9 0.500 20 0.053 0.064 0.00637 0.0028 0.0120 0.011 0.02 
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power with accuracy of 0.09 %. The same results applies to the measurement of wind power and 

energy, since the parameters A, ρ and t are known with much higher accuracy (Appendix C). 

 5. Conclusion 

Accurate measurement of wind power (energy) is a necessary condition for the development 

of new types of wind power generators. In this paper, it is shown that intergrating a two-bit 

SDMM with cup anemometers yields a simple solution for measuring of wind power and 

energy. The presented method is theoretically analyzed and empirically verified through several 

experiments. The obtained results demonstrate that, over the time interval of 100 seconds, wind 

power (energy) can be measured with an accuracy of 0.09 %. Thanks to this feature, the 

proposed method represents a solid basis for the design of high-precision instruments as a low-

cost alternative to those based on standard sampling method. 
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APPENDIX A 

Suppose that, over the time interval T, the product of k signals is measured with a two-bit 

SDMM. In that case, the output value  of the multiplier consisting of k – 1 binary multipliers 

will be equal to 

( )k



         1 2 1 2
1 0

1 1
( ) ( ) ( ) ( ) ( ) ( )

TN

k k
i

i i i f t f t f t dt
N T                                                                    

(A1) 

where Ψ1(i), Ψ2(i),...,Ψk(i) are the digitized values of k input signals and where N → ∞ denotes 

the unlimited number of samples (caused by unlimited sampling frequency) within T. Now, we 

can state the following theorem.  

Theorem 1. Let  
 2

2 e

e

k
k

N


  be the variance of the average error for product of k signals 

measured with a two-bit SDMM over the interval [0, T]. Then, for finite value of N 

( ) =k
 
      
 
 

 
2 2 2 2

1 2 1 2

0 0

(2 )1 1
( ) ( ) ( ) ( ) ( ) ( )

T Tk

k ke

g
f t f t f t dt f t f t f t dt

N T T                                                  (A2) 

Proof. Instead of strict and long proof by mathematical induction, we give a simple analysis (in 

the spirit of mathematical induction) that confirms the general formula. 

Step 1. For k = 1, the output value is equal to 

1( )ψ f t e                                                                                                                                         (A3) 

and the variance of the average error is given by 

1

2
(1) = f

 
    
 
 

 
2 2

1

0 0

1 1
( ) ( )

T T

e

g
f t dt t dt



(A4) 

Step 2. For k = 2, the output value is equal to 

1 2( ) ( )ψ f t f t e                                                                                                                                                                                                                                                                                                                                                                                                                    (A5) 

and the variance of the average error is given by 

(2
(2) = f t f t f t f t

 
      
 
 

 
2

2 2 2
1 2 1 2

0 0

)1 1
( ) ( ) ( ) ( )

T T

e

g
dt dt

N T T                                                       (A6) 

Step 3. Observe that the expressions (A4) and (A6) can be written as 

0
2

1

(2 2
(1) = 1 1 f

 
      

 
 

 
2 2

1

0 0

)1 1
( ) [ ( ) ]

T T

e

g g
f t dt t dt
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1

1 2

(2 2
(2) = f t f t

 
      

 
 

 
2 2 2

1 2

0 0

)1 1
( ) ( ) [ ( ) ( ) ]

T T

e

g g
f t f t dt dt

N T T                                                (A8) 

In addition, observe that for any k ≥ 1 when adding the next function and the next multiplier: 

a) the first integral is multiplied with 2g, 

b) the function within the first integral is multiplied with the absolute value of the next function, 

c) the function within the second integral is multiplied with the square of the next function, 

Step 4. Suppose that the theorem is true for some k  and also a), b) and c). It remains to show 

that it holds for k + 1.  

+1 +1

(2 2
( 1) =

k

kk + f
 
        
 
 

 
2 2 2 2 2

1 2 1 2

0 0

)1 1
( ) ( ) ( ) ( ) [ ( ) ( ) ( )] ( )

T T

k k ke

g g
f t f t f t f t dt f t f t f t t dt

N T T    (A9) 

When the indicated operations are performed, we obtain 

+1 +1( 1) =k +
 

      
 
 

 
1

2 2 2 2
1 2 1 2

0 0

(2 )1 1
( ) ( ) ( ) ( ) ( ) ( )

T Tk

k ke

g
f t f t f t dt f t f t f t dt

N T T                   (A10) 

which proves the theorem. 
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APPENDIX B 

Let γ and ε be the relative measurement errors of 
2

u and
2
,u respectively. In that case, we 

can write 

2 2
(1 )

m ex
u u   

                                                                                                                        (B1) 

2 2
(1 )

m ex
u u   

                                                                                                                                                                                

(B2) 

where 
2

ex
u and

2

ex
u denote the exact values of 

2
u and

2
,u respectively. With this in mind, 

suppose that ε << 1 (this assumption is very reasonable in practice). In that case, the expression 

(B2) can be written as 

2 2 2 22 2(1 ) (1 2 ) (1 2 )
m ex ex ex

u u u u            
                                                                     (B3) 

wherefrom it follows that                                                                                                                                                                               

2                                                           (B4) 

In a similar way, let δ and ξ be the relative measurement errors of 
3

u and
3
,u respectively. In 

that case, we can write 

3 3
(1 )

m ex
u u   

                                                                                                                               

(B5) 

3 3
(1 )

m ex
u u   

                                                                                                                                                                        (B6) 

where 
3

ex
u and

3

ex
u denote the correct values of 

3
u and

3
,u respectively. Now, since ξ << 1, 

the expression (B6) can be written as 

3 3 3 33 2 3(1 ) (1 3 3 ) (1 3 )
m ex ex ex

u u u u              
                                                            

(B7) 

wherefrom it follows that                                                                                                                                                                               

3                                                           (B8) 

If dithering signals h1, h2 and h3 are mutually uncorrelated, the measurement accuracy of any 

SDMM-based device will depend only on its deterministic components. Hence, it follows that 

                                                                                                                                                                                                           (B9) 

i.e. 

3                                                                                                                                                                                   (B10) 

In other words, the estimated accuracy of the PIM-RMS, in the case of measurement of 
3

u , is 

not worse that 3·40 ppm = 120 ppm. 
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APPENDIX C 

The total wind energy ER is calculated as 

3
R

1

2
    E A v t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    (C.1) 

Now, let dER be the uncertainty of the measurement of total wind energy. In that case, the 

relative uncertainty of the measurement of total wind energy can be expressed as 

3
R

3
R




   

dE dA d dv dt

E A tv


(C.2) 

However, as the relative uncertainties of measurement of multiplicative constants (A, ρ) and 

time t are extremely small (they are known with a very high accuracy), it follows that 

33
R

3 3
R

d udE dv

E v u

                                                                                                                                                                                                                                                                                                                                                                                                           (C.3) 
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 We propose a new method for stochastic measurement of wind power and energy. 

 The experimental results show that wind power and energy can be measured with an 

accuracy of 0.09 %.  

 The proposed method can be easily implemented in hardware. 

 The proposed method can be easily integrated with cup anemometers.                                                                      

 


