Supporting material for the article: Georgijević, R., Vujković, M., Gutić, S., Aliefendić, M., Jugović, D., Mitrić, M., Đokić, V., Mentus, S., 2019. The influence of synthesis conditions on the redox behaviour of LiFePO4 in aqueous solution. Journal of Alloys and Compounds 776, 475–485. https://doi.org/10.1016/j.jallcom.2018.10.246 ## Supplementary material ## THE INFLUENCE OF SYNTHESIS CONDITIONS ON THE REDOX BEHAVIOUR OF LIFEPO₄ IN AQUEOUS SOLUTION Radovan Georgijević^a, Milica Vujković^a*, Sanjin Gutić^b, Meho Aliefendić^b, Dragana Jugović^c, Miodrag Mitrić^d, <mark>Veljko Đokić^e</mark>, Slavko Mentus^{a,f} After initial stabilization of CVs, the stable redox behavior throughout10 successive cycles at same scan rate was obtained (as shown in Fig.S1). **Fig.S1**. CVs of LFPC prepared by sol-gel (a) and solid-state (b) procedure, measured in LiNO₃ aqueous solution at a common scan rate of 20 mV s⁻¹ during 10 successive cycles ^aFaculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade, Serbia ^b University of Sarajevo, Faculty of Science, Department of Chemistry, Zmaja od Bosne 33-35, Sarajevo, Bosna i Herzegovina. ^c Institute of Technical Sciences of SASA, Knez Mihailova 35/IV, 11 000 Belgrade, Serbia. ^dInstitute of Nuclear Sciences "Vinča", Mike Petrovića Alasa 12-14, 11001 Belgrade, University of Belgrade, Serbia ^e Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia ^fSerbian Academy of Sciences and Arts, Knez Mihajlova 35, 11000 Belgrade, Serbia