Serbian Ceramic Society Conference ADVANCED CERAMICS AND APPLICATION

Organized by
Serbian Ceramic Society
&
Institute of Technical Sciences of SASA

PROGRAM AND THE BOOK OF ABSTRACTS

Serbian Academy of Sciences and Arts, Knez Mihailova 35 May 10-11th, 2012, Belgrade, Serbia **Book title:** Serbian Ceramic Society Conference - ADVANCED CERAMICS AND APPLICATION: Program and the Book of Abstracts

Publisher:

Serbian Ceramic Society

Editors:

Prof. Dr. Vojislav Mitić Dr. Nina Obradović Dr. Lidija Mančić

Technical Editor:

Aleksandra Stojičić

Printing:

Serbian Academy of Sciences and Arts, Knez Mihailova 35, Belgrade, Serbia Format Pop Lukina 15, Belgrade, Serbia

Edition:

70 copies

CIP - Каталогизација у публикацији Народна библиотека Србије, Београд

666.3/.7(048) 66.017/.018(048)

SERBIAN Ceramic Society. Conference (1; 2012; Beograd)

Advanced Ceramics and Application: program and the book of abstracts / #[1st] #Serbian Ceramic Society Conference, May 10-11th, 2012, Belgrade, Serbia; organized by Serbian Ceramic Society & Institute of Technical Science of SASA; [editors Vojislav Mitić, Nina Obradović, Lidija Mančić]. - Belgrade: Serbian Ceramic Society, 2012 (Belgrade: Serbian Academy of Sciences and Arts). - XII, 37 str.; 29 cm

Tiraž 70.

ISBN 978-86-915627-0-0

- 1. Srpsko keramičko društvo (Beograd)
- а) Керамика Апстракти b) Наука о материјалима Апстракти c) Наноматеријали Апстракти

COBISS.SR-ID 190546188

S2.2

Ho₂O₃ Additive Effects on Microstructure and Dielectrical Properties of BaTiO₃ Ceramics

Vesna Paunović¹, Vojislav V.Mitić^{1,2}, Ljiljana Živković¹, Miroslav Miljković³

¹University of Niš, Faculty of Electronic Engineering, Aleksandra Medvedeva 14, Niš, Serbia, ²Institute of Technical Sciences of SASA, Belgrade, Serbia, ³University of Niš, Center for Electron Microscopy, Serbia

Doped BaTiO₃-ceramics is very interesting for its application as resistors with PTCR, multilayer ceramics capacitors, thermal sensors etc.

Ho doped BaTiO₃ ceramics, with different Ho_2O_3 content, ranging from 0.01 to 1.0 wt% Ho, were investigated regarding their microstructural and dielectric characteristics. The samples were prepared by the conventional solid state reaction and sintered at 1320°, 1350 °C and 1380°C in an air atmosphere for 4 hours.

The grain size and microstructure characteristics for various samples and their phase composition were carried out using a scanning electron microscope SEM equipped with EDS system. SEM analysis of $Ho/BaTiO_3$ doped ceramics showed that in samples doped with a low level of rare-earth ions, the grain size ranged from 10-40 μ m, while with the higher dopant concentration the abnormal grain growth is inhibited and the grain size ranged between 2-10 μ m.

Dielectric measurements were carried out as a function of temperature up to 180° C. The low doped samples sintered at 1380° C, display the high value of dielectric permittivity at room temperature, 2500 for 0.01Ho/BaTiO₃. A nearly flat permittivity-response was obtained in specimens with higher additive content. Using a modified Curie-Weiss low the Curie constant (C') and a critical exponent γ were calculated. The obtained values of γ pointed out the diffuse phase transformation in heavily doped BaTiO₃ samples.