Low temperature sensitivity of upconversion emission in Y₂O₃:Yb,Tm and Y₂O₃:Yb,Ho powders

Vesna Lojpur¹, Marko Nikolić², Mina Medić², Lidija Mančić¹,
Olivera Milošević¹, Miroslav D. Dramićanin²

¹Institute of Technical Sciences of SASA, Belgrade, Serbia

²Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia

In recent years trivalent rare earth doped materials have received significant attention for optical temperature sensors. In these materials ratio of fluorescence emissions from different energy levels exhibit strong temperature dependence. Synthesized Y_2O_3 :Yb,Tm and Y_2O_3 :Yb,Ho powders were obtained *via* spray pyrolysis at 900 °C using 0.1 M nitrate precursor. Using laser excitation at 978 nm we investigated upconversion emission of these powders and recorded characteristic transitions: $^1D_2 \rightarrow ^3F_4$, $^1G_4 \rightarrow ^3H_6$, $^1G_4 \rightarrow ^3F_4$, $^3F_{2,3} \rightarrow ^3H_6$, $^1D_2 \rightarrow ^3F_3$, $^1G_4 \rightarrow ^3H_6$, $^3H_4 \rightarrow ^3H_6$ for Tm³⁺ and 5F_4 , $^5S_2 \rightarrow ^5I_8$, $^5F_5 \rightarrow ^5I_8$, 5F_4 , $^5S_2 \rightarrow ^5I_7$ for Ho³⁺. Further we analyzed temperature dependence of fluorescence intensity ratios of different Stark components in the range from 10K to 300K. Several of these ratios exhibit significant temperature sensitivity, with the largest value of 0.08 K⁻¹.

2nd International Conference on Optical, Electronic and Electrical Materials

5-7 August 2012, Shanghai, China