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Abstract 

Structural changes caused by mechanical activation of SrTiO3 powders were 

investigated using a variety of methods. Average crystallite size continuously decreased with 

increased activation time to around 20 nm after 120 min activation, while mesopore volume 

and specific surface area increased accordingly. Higher activation times lead to increased 

agglomeration of nanoparticles to form agglomerates of around 2 µm in size, ultimately 
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producing a relatively stable powder, which exhibits lower microstrain than powders activated 

for shorter periods of time. Raman spectroscopy shows that the behavior of TO2 and TO4 

modes is consistent with a decrease in particle size, while behavior of the nonpolar TO3 mode 

is markedly different, indicating relaxation of the inversion symmetry in polycrystalline 

SrTiO3. UV-VIS spectra show that mechanical activation has negligible effect on SrTiO3, 

with a slight shift caused by TiO2 contamination due to presence of air. Other than this, the 

mechanical activation process preserves the chemical purity of the initial powder. 

 

Keywords: Mechanical activation; SrTiO3; microstructure; ball milling; size dependence. 

 

1. Introduction 

Materials based on strontium titanate can be found in a variety of applications, like 

sensors [1], catalysis [2], UV detectors [3], solar cell [4], multilayer ceramic capacitors 

(MLCCs) [5], etc. Strontium titanate powders are also well known photocatalysts for NOx 

degradation under UV light. Both stoichiometric [6] and non-stoichiometric powders [7] have 

been shown to exhibit considerably higher photocatalytic activity than P25 TiO2 powder 

under the same illumination conditions. The nature of chemical bonding between Sr2+, Ti4+ 

and O2- ions in ABO3 cubic perovskite structure leads to a unique structure which makes it a 

very interesting electronic material. Functional properties of SrTiO3 are strongly influenced by 

its crystal defects, particle size, morphology, etc., which ultimately depend on the preparation 

methods and conditions [8-10]. State-of-the-art application requires homogeneous micrograin 

ceramic materials with low impurity levels, smaller particle sizes and narrow size distribution, 

making alternative low-cost effective methods for large-scale production of phase-pure and 
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nanosized SrTiO3 particles an important topic. While numerous methods for the production of 

SrTiO3 nanopowders such as sol-gel [11], hydrothermal [12], combustion [13], polymeric 

precursor [14], molten salt [15] and solvothermal [16] methods have been developed, SrTiO3 

is dominantly obtained by conventional solid state reaction [17]. Most of these methods 

require high-purity chemicals, making them too expensive for industrial scale synthesis.  

Sol-gel synthesis through alkoxide hydrolysis of strontium titanate powder produced, 

depending on synthesis conditions, particles of 350-800 nm in size. In addition, minor fraction 

of the sample contained ultra-fine particles 60 nm in size and agglomerates about 2 µm in size 

[18]. Hydrothermal sol-gel method allows synthesis of relatively monodisperse SrTiO3 

powder with nanoparticles in 40-100 nm range, using TiCl4 and SrCl2 as precursors, with 

reaction times of 12-48 hours at 180oC, allowing limited size control and very homogeneous 

sample [19]. Another method to obtain ultra-fine powders involves combustion of a 

dehydrated form of a strontium-titanium precursor complex, resulting in single phase SrTiO3 

nanoparticles 20-40 nm in size, produced in a single-step combustion process [20]. On the 

other hand, in solid state reaction SrTiO3 powders were generally produced through 

mechanochemical reaction of strontium carbonate or strontium oxide with titanium dioxide 

powders at temperatures above 1000 oC [21, 22]. These often have undesirable characteristics, 

such as large size, broad size distribution, hard agglomeration, phase impurities, etc. [9]. To 

the best of our knowledge, there have been no reports on mechanical activation of commercial 

strontium titanate powders to obtain nanoparticles less than 100 nm in size. There is a report 

of samples synthesized using a solid state reaction, followed by milling for 10-120 min, 

resulting in particle sizes in 100-300 nm range [23]. 

In SrTiO3 thin films, it was observed that an increase in concentration of oxygen 

vacancies leads to an increase in lattice parameter a, without a change in the crystal structure 
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even at relatively large concentrations of oxygen vacancies [24, 25]. This increase can be 

correlated with strong Coulombic repulsion between strontium and titanium cations in the 

understoichiometric phase and high vacancies concentrations can induce significant strain in 

the lattice, as much as 1-2%, although no ordered arrangement of these vacancies, regardless 

of their concentration has ever been observed [26]. Under stoichiometric phases of strontium 

titanate exhibit a significant increase in electrical conductivity and semiconductor behavior 

compared to the insulating stoichiometric SrTiO3. SrTiO2.5 phase even exhibits metallic 

behavior at room temperature. Thermal stability of epitaxial SrTiO3 films shows that they are 

thermally stable up to around 550oC in vacuum, where desorption of SrO occurs, followed by 

release of SiO and additional SrO around 850oC [27]. 

 Taking all of this into account, this work aims to investigate the influence of 

mechanical activation on the microstructural characteristics of SrTiO3 powder particles and 

the viability of mechanical activation as a method of production of high-purity SrTiO3 

nanocrystalline powders. 

2. Experimental procedure 

SrTiO3 (99% purity, mean particle size ≤ 5 µm) powder was purchased from Aldrich 

(USA). Mechanical activation was conducted by ball-milling the samples of 6.5g in 45-cm3 

tungsten carbide jar, with balls 5 mm in diameter (powder-to-ball ratio of 1:20), in a planetary 

micro mill (PULVERISETTE 7 premium line, FRITSCH). Mechanical activation was 

conducted for different time intervals (activation time): 0, 5, 10, 30, 60, 90 and 120 minutes, 

in air. The samples are labeled as STO-0 to STO-120, according to the corresponding 

activation time.  

Morphology and microstructure of non-activated and mechanically activated powders 

were analyzed by a Scanning Electron Microscope (SEM), Transmission Electron Microscope 
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(TEM) and particle size analyzer. SEM measurements were conducted using JSM-6390 LV 

JEOL (25 kV), where sample tablets were crushed and covered with gold (Au). TEM 

measurements were conducted using JEM-1400 (120kV), where samples were prepared 

through sonication of a 0.5% dispersion of dry powder samples in ethanol for 75 minutes 

deposition onto a carbon mesh. The particle size distribution (PSA) and the nature of the 

agglomerate were determined by a laser particle size analyzer (Mastersizer 2000, Malvern 

Instruments Ltd., UK). Samples were mixed with distilled water, and an aqueous suspension 

was obtained after 10-min ultrasonic disaggregation.  

Nitrogen adsorption-desorption measurements were performed by a Sorptomatic 1990 

Thermo Electron device at -196 °C. The samples were degassed at room temperature for 1h 

under vacuum, and then heatedat5 °C/min to 110 °C and kept at this temperature for at least 

18 h. The obtained isotherms were analyzed using Advanced Data Processing v5.1 (Thermo 

Electron S. p. A.) software package, where p and p0 represented the equilibrium and 

saturation pressures of nitrogen at the adsorption temperature. Brunauer-Emmet-Teller (BET) 

method was applied for the determination of the specific surface area (SBET) of the samples, 

using the linear part of the nitrogen adsorption isotherms [28]. Mesopore volume was 

calculated according to the Barrett-Joyner-Halenda method from the desorption branch of the 

isotherm [29]. 

 The X-ray powder diffraction patterns were obtained using a Philips PW-150 

diffractometer with Cu-Kα radiation, at room temperature, at angles 2θ of 10-900 with a step 

of 0.050 and retention time of 1s per step. Rietveld analysis was performed with full 

refinement using GSAS II software package [30]. Obtained values of Rwp (weighted residual 

factor) varied from 6.2% to 15.6% and the Goodness of Fit indicator was GoF~1. 
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Raman spectra were taken in the spectral range of 20–1200 cm-1 at room temperature, 

with a Horiba Jobin Yvon LabRam ARAMIS Raman system, using the 633 nm line of a He-

Ne laser. Data was collected using a count time of 5 seconds with five averaging cycles. The 

samples were measured under a microscope using a 100x objective. 

The diffuse reflectance UV-Vis spectra were recorded using a Nicolet Evolution 500 

spectrometer with a diffuse reflectance accessory. The reflectance (R) data were converted to 

pseudo-absorbance f (R) using the Kubelka-Munk equation. The samples were grounded, 

heated overnight at 110 0C and then scanned in the range of 200-800 nm using a SRS-99-010 

Labsphere Spectralon white standard as reference material. 

 

3. Results and discussion  

Fig. 1. Shows the results of SEM analysis of the powders after appropriate activation 

times (5, 10, 30, 60, 90 and 120 min). Non-activated SrTiO3 is a powder composed of 

predominantly polygonal particles 0.2–1.2 µm in size with clear grain boundaries. After 

mechanical activation particle size decreased, depending on activation time, and was in the 

range between 70 and 390 nm, with observable particle agglomeration. For longer activation 

times, more than 30 minutes, activation induces stronger stress, causing the formation of a 

defect structure in a wider layer of powder particles and energy accumulation at the surface of 

powder particles. This was when formation of small grains was observed, occurring through 

dilation of grain boundaries within individual particles [31]. As a result of these processes, 

surface erosion and agglomeration was observed for the samples activated for 60 minutes and 

more. The agglomerates can be hard and soft, while the process of their formation is called 

secondary agglomeration [32]. Soft agglomerates are often formed in mechanically activated 
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powders, and may have a negative impact on the sintering process aimed at obtaining 

ceramics with good performance. Continuous mechanical activation longer than 60 minutes 

leads to various forms of deformation, causing the strengthening or breaking of the 

agglomerates. Agglomerates fracture can be due to a fatigue failure mechanism and/or due to 

the fragmentation of fragile agglomerates. In these samples, it can be observed that longer 

activation time of 90 minutes leads to dominant presence of secondary agglomerates, though 

particles remain constantly present. Mechanical activation for 120 minutes causes larger 

secondary agglomerates to break up into smaller agglomerates, while forming new ones at the 

same time. This is consistent with continuous deformation, cold welding and fracturing to 

yield a powder with a refined internal structure, but coarse and stable particle size [33]. 

Particles size analysis (PSA) shows the same effects observed in SEM (Fig. 2): 

mechanical activation led to the comminution of the initial powder particles,resulting in the 

shift of the distribution curve to smaller particle diameters, for powders activated for 5, 10 and 

30 minutes activation. Particle segregation in the initial powder sample can also be observed. 

Longer mechanical activation (for 60 minutes) leads to agglomeration : agglomerates are 

approximately 15 µm in size, while particles are 1.3 µm, resulting in bimodal size distribution 

observed in PSA. Further mechanical activation (for 90 minutes) leads to comminution of 

these agglomerates to 2 µm in size, with larger quantity in volume than that of particles, 

which are approximately 0.4 µm in size. More intensive fragmentation of agglomerates is 

observed in samples mechanically activated for 120 minutes, when the formation of new 

agglomerates occurs, as observed in SEM analysis (Fig. 1.). Changes in median size with 

activation time are shown in Table 1. Ultimately, mechanical activation led to the 

comminution of the initial powder particles and a wider particle size distribution for powder 

activated for 120 minutes.  



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
 

8 

 

TEM images show that the initial powder (Fig. 3a) consists of relatively large 

polygonal nanoparticles, hundreds of nanometers in diameter. Mechanical activation for 5 

(Figure 3b) and 10 (Figure 3c) minutes causes comminution and breakage of these 

nanoparticles. After 30 minutes (Figure 3d) agglomeration is observed and particle size is 

considerably reduced (from few tens to few hundreds of nanometers). Agglomerates increase 

in size after 60 (Figure 3e) and 90 minutes (Figure 3f), while after 120 minutes (Figure 3g) 

there is, again, evidence of comminution and breakage, indicating that the agglomerates have 

undergone merging and sintering, only to be ground and broken again by the mechanical 

activation. This is all consistent with observation in SEM and PSA. 

The adsorption/desorption isotherms of non-activated and mechanically activated 

samples were taken for a range 0<P/P0<1 (Fig. 4. a). These isotherms correspond to type IV 

isotherm [34], which indicates the presence of mesopores (2-50 nm) in these samples, with a 

type H3hysteresis loop in the range 0.18<P/P0<1. H3 hysteresis loop is associated with the 

presence of plate-like particles that form aggregates at high P/P0. Figure 3b. shows that 

mechanical activation causes a significant increase in pore volume of the SrTiO3 powder. 

Specific surface area (SBET) values were obtained by the BET method using the linear part of 

the adsorption isotherms for the interval 0.05<P/P0<0.35.Changes in the pore volume and 

specific surface area are shown in Fig. 4b. Non-activated powder has a specific surface of 

2.05 m2 g−1, and with activation, this increases up to 7.4 m2 g−1 for 60 minutes of activation. 

After further mechanical activation, the specific surface area remained relatively constant, 

which can be attributed to particle agglomeration due to an increase in the particle surface 

energy during comminution of the initial powder particles. Mesopore volume follows similar 

trend, and this can be attributed to the following: during mechanical activation of up to 60 

minutes, the dominant contribution to the increase in pore volume was formation of 
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interparticle pores, due to formation of larger particles during secondary agglomeration; 

further mechanical activation leads to fragmentation of agglomerates and reduction in 

interparticle pores, resulting in a decrease in mesopore volume. Figure 4c shows the pore size 

distribution of mesopores in non-activated and mechanically activated samples. The most 

frequent pore diameter in the non-activated sample is about 2 nm, a value close to the limit for 

microporous materials (<2 nm). Mechanical activation increases the average pore size and 

results in narrower pore size distribution. 

Fig. 5. represents XRD patterns of the non-activated and activated SrTiO3 powders. 

XRD analysis indicates that the mechanical activation did not effect significant change in the 

cubic structure of the initial powder [JCPDS Card No. 89-4934 for SrTiO3, 84-1778 for 

SrCO3, 89-4921 for TiO2-a]. Diffraction patterns show sharp and intensive reflections for the 

initial powder, while increased activation times lead to an increase in peak broadening. This 

can be attributed to particle refinement, reduced crystallite size and generation of stress field 

associated with particle fragmentation and amorphization [35, 36]. After 30 minutes of 

mechanical activation, new phases: orthorhombic strontium carbonate (SrCO3) and tetragonal 

titanium dioxide (TiO2), were observed, which can be attributed to a reaction between the 

SrTiO3powder and atmospheric CO2. 

 Mechanical activation is an intense process and leads to a significant increase in 

defects (vacancies, dislocations and unit cell volume). Lattice parameter a (=b=c), percentage 

distribution of the SrTiO3, crystallite size and microstrain in mechanically activated samples 

were obtained using Rietveld refinement of XRD patterns (Table 1, Fig. 6).  

 At the beginning of the activation process, the dominant effects were attrition or 

erosion of the particle surface, which led to the crystallite size reduction during the first 10 

minutes of mechanical activation, from 75 nm to 56 nm, with an increase in lattice microstrain 
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from 0.02 % to 0.04 %. Increase in lattice parameter a suggests increase in the concentration 

of oxygen vacancies [24, 25], while relatively minor increase in microstrain suggests that 

these vacancies are formed primarily on the surface, which is consistent with the process of 

mechanical activation. Due to relatively large crystallite size, the crystal lattice is able to 

accommodate surface defects without significant strain. After activation for 30 minutes, 

crystallite size decreases to 34 nm and there is a sharp increase in microstrain to 0.14%, 

coupled with a decrease in lattice parameter a. This is suggests that, due to smaller size, 

crystal structure of nanoparticles begins to strain, in order to compensate for the existence of 

surface defects and the increased surface free energy. Extension of the activation time to 60, 

90 and 120 minutes leads to the formation of agglomerates, in order to reduce the surface free 

energy, and crystallite sizes are in range from 34 nm to 20 nm. The values of lattice strain 

vary from 0.09% to 0.26 % with maximum of 0.26 % for 90 minutes of activation for the 

particle size of 34nm. This suggests that mechanical activation for longer than 60 minutes 

caused sintering (as indicated by the increase in crystallite size after 90 minutes), where, after 

90 minutes, the process is probably incomplete, resulting in higher concentration of oxygen 

vacancies and other defects, as indicated by the increase in lattice parameter a and 

microstrain. After 120 minutes, these processes are most likely complete, resulting in 

stabilization of crystallites through size reduction, where less stable crystals or agglomerates 

are split into two or more smaller but more stable crystals. All of this is consistent with SEM 

and TEM measurements.  It is significant that the microstrain in the final sample (after 120 

minute activation) is considerably lower than in any other sample activated for more than 10 

minutes, suggesting that prolonged activation likely lead to stabilization of particles through 

repetition of particle size reduction and grain sintering, resulting in a more stable sample, in 

spite its relatively small crystallite size. Therefore, applied mechanical activation can 
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successfully lead to the formation of cubic nanocrystalline SrTiO3 powder with particle size 

of around 20 nm. 

 Raman spectroscopy measurements were used to determine the lattice vibrational 

spectra of the SrTiO3 powders. It is well known that strontium titanate has an ideal cubic 

perovskite structure at room temperature with Pm3m space group and vibration modes 

4F1u+F2u. One of the F1u vibration modes is acoustic, while F2u is an inactive ("silent") mode, 

resulting in 3 IR-active modes: 3F1u, which are Raman inactive. Therefore, no first-order 

Raman scattering is expected to occur in an ideal perovskite structure, instead, the Raman 

spectrum corresponds to the second-order scattering [37]. However, the presence of oxygen 

vacancies and other defects, strain effects or external electric field breaks the central 

symmetry of SrTiO3, resulting in the appearance of first-order modes in bulk STO even at the 

300 K [37, 38].  

 Raman peaks of non-activated and mechanically activated powders were recorded in 

the range from 20 cm-1 to 1200 cm-1 (Fig. 7). In accordance with literature data, two very 

broad Raman effects from the second-order scattering were observed from 220 cm-1 to 500 

cm-1 and 590 cm-1 to 760 cm-1, respectively [37]. Both of these consist of a large number of 

modes, typical of a rough-grained SrTiO3 powder, ceramics or film at 300 K. The mode 

observed at 1026 cm-1 is also a second-order mode. Peaks observed at: 174 cm-1, 540 cm-1 and 

790 cm-1, in the non-activated powders, are assigned to following first-order modes: a doublet 

(LO1+TO2), a TO4 mode and a (LO4+A2g) doublet, respectively [39, 40]. (Eg+B1g) peak at 152 

cm-1, originating from R-point at the border of Brillouin zone, is barely noticeable. The origin 

of the modes at ~ 107 cm-1 and at ~ 126 cm-1 marked as X1 and X2 on the graph, is not 

entirely clear. Having in mind the analyses of other authors, X1 and X2, can be attributed to 
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the existence of ferroelectric domains induced by defects in the crystal lattice [41], such as 

oxygen vacancies [42].  

In the spectrum of the SrTiO3 powder activated up to 10 min, slight changes can be 

observed: an increase in intensity of the (LO1+TO2) peak which had a characteristic "Fano" 

shape, decrease and widening of the mode at 250 cm-1 and the amplification of the TO4 mode 

and R-structural mode. The interference between the polar TO2 mode and the wide low-

energy two-phonon continuum, caused by the polarization fluctuations in polar micro- or 

nano-regions usually induced by defects, and results in the Fano-shape of the (LO1+TO2) peak 

[38, 43]. The intensity of TO2 mode is proportional to the total volume of polar micro-regions. 

The appearance of TO2 phonons in SrTiO3 is usually accompanied by the appearance of 

remnant polarization [44]. A considerable increase in the intensity of the polar TO4 mode also 

indicates an increase in the volume of the local ferroelectric domains, which coexist with the 

dominant paraelectric phase [39].  

 The intensity of the entire Raman-effect in the range from 220 cm-1 to 400 cm-1 

generally decreases with the further increase in activation time, which especially refers to the 

second-order modes at higher wavenumbers. For the longest activations (90 and 120 min), 

this wide Raman-effect becomes even lower than the (LO1+TO2) peak, which is accompanied 

with a considerable decrease in the intensity of the second order Raman-mode in the range 

from 590 to 760 cm-1. On the other hand, the intensity of R- mode (Eg+B1g), (LO1+TO2) 

doublet and TO4 mode continuously increases. The rise in intensity of X1 and X2 modes can 

also be noticed, especially for activation up to 60 min. Although the behavior of X1 and X2 

modes at activation times up to 60 min is analogous to that of the TO2 (within the doublet 

LO1+TO2) and TO4 mode, their position does not suggest they can be assigned as first-order 

fundamental Raman-modes, even though they can be linked to the disorder of the SrTiO3 
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lattice. Contribution of  LO4 mode is also more evident for longer activation times, while the 

LO3 mode becomes noticeable only for activation over 60 min. In the second-order modes, for 

the activation time of 60 minutes a very weak silent doublet (LO2+TO3) is observed at ~ 258 

cm-1, indicating the relaxation of the inversion symmetry in polycrystalline SrTiO3 [44] with 

increase in defect concentration and microstrain. Although the spectra of the sample activated 

for 120 min exhibits a slight increase of the silent peak, it still remains weak, indicating that 

there is no long-range structural distortion, as well as a small number of polar micro-regions 

and no overlap between the adjacent polar micro-regions [44]. 

Raman spectroscopy gave a clear evidence about the blue shift of the TO4 mode, X1 

mode and (LO1+TO2) doublet. The X1 mode shifts from 107 cm-1 to 109.8 cm-1. The doublet 

(LO1+TO2) shifts from 174.2 cm-1 to 176.2 cm-1 for activation time up to 90 min and the 

analogue behavior is observed for the polar TO4 mode, which moves from 539.5 cm-1 to 

542.7cm-1 in the spectra of powders activated for 30 - 90 min, and to 542 cm-1 in the sample 

activated for 120 min. The observed shift of polar TO4 and TO2 modes is primarily caused by 

the introduction of microstrain into the SrTiO3 lattice, as well as by the reduction in crystallite 

size, while changes in intensity with increase of activation time are analogous to the reported 

change of their intensity with decrease in temperature [44]. Similar behavior of TO4 and TO2 

modes, in both intensity and position are in accordance with the reported changes with the 

decrease in particle size [45]. On the other hand, the R-structural mode exhibits a shift 

towards lower wavenumbers (red shift) with increase in activation time.  

The occurrence of the strongest SrCO3 Raman line in activated powders (after 10 

minutes) and increase of its intensity with prolonged activation confirms the formation of 

surface SrCO3, also observed by XRD measurements, caused by the enhanced surface activity 

of activated powders and by the fact that the activation of powders was performed in air. 
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Optical properties of SrTiO3 non-activated and mechanically activated samples are 

investigated via Uv-VIS diffuse reflectance spectra, Fig. 8. Kubelka-Munk function is applied 

to convert the diffuse reflectance into the equivalent band gap energy. 

F(R∞)=(1- R∞)2/2 R∞ =k/s   (1) 

here R∞ is the reflectance of the sample. Fig. 9. Shows the plot of [F(R∞/hν]1/2 vs. hν, in which 

linear segments are extended to intersect with the hν-axis to obtain the indirect band gap of 

the non-activated and mechanically activated samples for 120 minutes. There is a small and 

gradual shift in the band gap, from 3.21 to 3.19 eV, as a consequence of mechanical 

activation, while the experimental value of the band gap for bulk strontium titanate is 3.21-

3.25 eV [46]. There are two possible sources of this shift: the increase in the amount of TiO2 

with increase in the mechanical activation time, and the increase in oxygen vacancy 

concentration. TiO2 exhibits somewhat smaller band gap than SrTiO3 [47] and its presence on 

the surface of the nanoparticles could lead to a gradual decrease in the overall band gap of the 

system. Also, ab initio calculations of vacancy defects in strontium titanate show that there is 

a slight decrease in the band gap with increase in oxygen vacancy concentration to 8.3% [48]. 

Considering that the shift towards smaller band gap in our system occurs continuously with 

increase in activation time, while the changes in lattice parameters indicate fluctuations in the 

concentration of oxygen vacancies, there is considerably stronger correlation of the band gap 

shift with increase in TiO2 content than with increase in vacancy concentration. 

 

4.Conclusion 

 Effect of mechanical activation on microstructural properties of SrTiO3 powders was 

investigated using a wide array of methods. It was observed that prolonged mechanical 
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activation caused a decrease in average crystallite size from 75 nm to 20 nm, and a 

corresponding increase in mesopore volume and specific surface area, with maximum SBET = 

7.4 m2/g. Other than the appearance of SrCO3 and TiO2 phases caused by the presence of air 

during mechanical activation, no other impurities originating either from the planetary micro 

mill or any other source have been observed in either XRD or Raman spectra, suggesting that 

this method preserves the chemical purity of the initial powder. Mechanical activation causes 

particle fragmentation, with an increased share of large diameter particles, due to secondary 

agglomeration during activation. The narrowest size distribution is observed in the powders 

mechanically activated for 30 minutes, when aggregation of nanoparticles was first observed 

in SEM and TEM. Applied mechanical activation increased the intensity of all first-order 

Raman modes observed in the non-activated powders, and caused the appearance of new 

modes induced by defects and increased microstrain. The increase in intensity of (LO1+TO2) 

doublet and TO4 mode indicated an increase in the total volume of polar micro-regions, i.e. an 

increase in the volume of local ferroelectric domains coexisting with the dominant 

paraelectric phase. Changes in the intensity of polar TO4 and TO2  modes with the increase in 

activation time is analogous to the reported changes in their intensity with temperature 

decrease. The observed shift in the position of polar TO modes to higher wavenumbers (blue 

shift) is mainly a consequence of the introduction of microstrain into the SrTiO3 powder, 

which increases from 0.02 to 0.26%, as well as the consequence of a decrease in crystallite 

size. In contrast, markedly different behavior in terms of change in mode position was 

observed for the R-structural mode. In addition, mechanical activation increases the volume 

of ferroelectric domains in SrTiO3 nanoparticles. UV-Vis measurements indicate that TiO2 

contamination due to activation in air causes a slight shift in the band gap towards lower 

values. 
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Figure 1. SEM images of SrTiO3 powder: a) non-activated; and activated for: b) 5 min, c) 10 

min d) 30 min, e) 60 min, f) 90 min g) 120 min. 

Figure 2. Particle size distribution of non-activated samples and samples mechanically 

activated for 5, 10, 30, 60, 90 and 120 min; volume cumulative frequencies shown below. 

Figure 3. TEM images of SrTiO3 powder: a) non-activated; and activated for: b) 5 min, c) 10 

min d) 30 min, e) 60 min, f) 90 min g) 120 min. 

Figure 4. a) N2 adsorption/desorption isotherms for the mechanically activated samples: STO-

0, STO-60, STO-90 and STO-120; b) pore size distribution of mesoporous non-activated and 

mechanically activated powders: STO-5, STO-10, STO-30, STO-60, STO-90 and STO-120; 

c) mesopore volume and specific surface area as a function of activation time. 

Figure 5. XRD patterns of non-activated and activated SrTiO3 powders. 

Figure 6. Changes in crystallite size and lattice strain with activation time. 

Figure 7. The influence of the mechanical activation time on the Raman-spectra of SrTiO3 

powders (assignment is described in detail in the text). 

Figure 8.UV-Vis diffuse reflectance spectra for SrTiO3 samples with different time of 

mechanical activation; inset: enlarged region of the onset of absorption. 

Figure 9. left: Dependence of the value of the band gap on the mechanical activation time; 

right: Kubelka-Munk plots and band gap energy estimation of SrTiO3 samples: non-activated 

and mechanically activated in 120 minutes. 
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Table 1. Microstructural parameters of SrTiO3 obtained using Rietveld, PSA and BET analysis. 

Activation time 
(min) 

SrTiO3  

lattice parameters 
(Å) 

 Phase content (%) 

SrTiO3   SrCO3  
TiO2 

Median particle 
size 

(µm) 

SBET (m
2g-

1) 
Vmes (cm3g-

1) 

0 3.9057±0.0001  100            0            
0 

3.31 2.0471 0.0047 

5 3.9085±0.0001  100            0            
0 

3.31 3.1335 0.0075 

10 3.9102±0.0001  100            0            
0 

2.88 4.9739 0.0123 

30 3.9079±0.0001 96±1         3±1        
1±1 

2.51 7.1419 0.0207 

60 3.9066±0.0001 95±1         5±1        
1±1 

1.26 7.354 0.0228 

90 3.9085±0.0001 92±1         6±1        
2±1 

3.31 7.189 0.0226 

120 3.9067±0.0001 92±1         6±1        
2±1 

1.90 7.2104 0.0229 
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− SrTiO3 nanocrystalline powders were prepared using mechanical activation. 

− Powders mechanically activated for 30 minutes have narrowest size distribution. 

− Shift in TO polar modes to higher frequencies due to introduction of micro-strains  

− Observed relaxation of the inversion symmetry in SrTiO3 due to activation 

− Band gap decreases due to TiO2 contamination, due to milling in air 


