Supplementary data for the article: Todorović, Zoran B., Dragan Z. Troter, Dušica R. Đokić-Stojanović, Ana V. Veličković, Jelena M. Avramović, Olivera S. Stamenković, Ljiljana M. Veselinović, and Vlada B. Veljković. 2019. "Optimization of CaO-Catalyzed Sunflower Oil Methanolysis with Crude Biodiesel as a Cosolvent." *Fuel* 237 (February): 903–10. https://doi.org/10.1016/j.fuel.2018.10.056. ## Supplementary material ## Optimization of CaO-catalyzed sunflower oil methanolysis with crude biodiesel as a cosolvent Zoran B. Todorović^a, Dragan Z. Troter^a, Dušica R. Đokić-Stojanović^b, Ana V. Veličković^a, Jelena M. Avramović^a, Olivera S. Stamenković^a, Ljiljana M. Veselinović^c, Vlada B. Veljković^{a*} ^aFaculty of Technology, University of Niš, Bulevar oslobođenja 124, 16000 Leskovac, Serbia ^bZdravlje Actavis, Vlajkova 199, 16000 Leskovac, Serbia ^cInstitute of Technical Sciences of the Serbian Academy of Sciences and Arts, Knez Mihailova 35, 11000 Belgrade, Serbia **Fig. S1.** Variation of FAME content during the sunflower oil methanolysis with CaO as a catalyst and crude biodiesel as a cosolvent (methanol-to-oil molar ratio: 6:1, concentration of CaO: 0.642 mol/L, reaction temperature: $50 \,^{\circ}\text{C}$, and crude biodiesel amount, wt% of the oil weight: $2.5 - \circ$; $5 - \Delta$; $7.5 - \Box$; and $10 - \blacklozenge$). ^{*} Corresponding author: Vlada B. Veljković, Faculty of Technology, University of Niš, Bulevar Oslobođenja 124, 16000 Leskovac, Serbia, e-mail: veljkovicvb@yahoo.com. **Fig. S2.** XRD patterns of the calcined CaO used as a catalyst in combination with different amounts of crude biodiesel as a cosolvent. XRD pattern of the calcined CaO not used in the reaction was also provided for comparison.