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Abstract
The quantum mechanical description of microscopic phenomena treats minuscule 
particles as waves and explains why atoms and molecules absorb and emit radiation at 
particular frequencies. This article reviews the physical theory of waves and discusses 
similarities between atoms and musical instruments. In particular, it describes how we 
may identify new musical scales and harmonies and play atomic music by translating 
and scaling the frequencies in the atomic world to the audible spectrum. 
Keywords: waves, atoms, musical instruments, atomic music, audible spectrum

Quantum Mechanics appeared in the mid-1920s as a complete theoretical 
framework for microscopic dynamics. At the time, scientists had experimentally 
established that different atoms absorb and emit light with very distinct frequ-
ency and wavelength, and the Danish physicist Niels Bohr had incorporated the 
recent discoveries of the electron and the atomic nucleus in a theory of matter 
based on Newton’s classical mechanics. Bohr had thus in 1913 invoked the idea 
that the electron orbits the nucleus in the same manner as the planets orbit the 
Sun, but the motion must be restricted to preferred orbits with definite energies,  
E1, E2 etc. (Bohr 1913: 1). Light is emitted when the electron jumps between such 
orbits number n and m, and it has a definite energy, E = hf = En-Em, and a corres-
ponding  optical frequency f, given by E = hf, where h denotes Max Planck’s funda-
mental constant. The restriction to special orbitals and the jumps between them 
were postulated by Bohr and had no basis in existing physical laws, but they led to 
a very accurate formula for the energies and optical frequencies for the hydrogen 
atom. Despite great efforts by many physicists, however, no accurate theory could 
be derived for atoms other than hydrogen. 

The French physicist Louis de Broglie then suggested that one should describe 
the electrons as waves rather than as particles. The idea seems radical, but it may have 

*  This article was written for the project Quantum Music, co-financed by the EACEA within the 
programme Creative Europe (559695-CREA-1-2015-1-RS-CULT-COOP1). 
1   moelmer@phys.au.dk

D O I https://doi.org/10.2298/MUZ1824051M
U D C 530.145.6:785/789



52

МУЗИКОЛОГИЈА / MUSICOLOGY  24-2018

drawn a glimpse of intuition from the physical theory of music and musical instru-
ments! Indeed, many physical objects oscillate at very regular and well-defined frequ-
encies: sound in organ pipes and wind instruments, strings and membranes. These 
phenomena are not described by a single moving object or by the motion of the indi-
vidual atoms that constitute the physical objects, but rather by the collective motion 
of the whole object. The motion of a vibrating string is thus represented by as a conti-
nuous deformation from equilibrium along the string. If the string is bent in one loca-
tion, the tension pulling towards its ends straightens the string, but it may continue 
its motion and soon after bend to the other side. 

The reader is invited to recall how a skipping rope may be set in oscillatory motion 
at specific frequencies, where the midpoint of the rope oscillates naturally up and 
down at a slight motion made by the hand holding the rope. Moving the hand at a 
different frequency produces only a little motion, but at twice the frequency, one 
induces another, figure-8 wave pattern with the middle of the rope at rest, while the 
two opposite halves oscillate up and down, opposite to each other. This phenomenon 
is governed by Newton’s mechanical laws of motion, applied to every segment along 
the rope and taking into account the forces they exert on each other by means of a 
so-called wave equation. Denoting the frequency of the simple up and down motion 
as f1, one finds a whole sequence of other regular solutions with frequencies fn = n·f1, 
where n=1, 2, 3, … labels the frequency and also counts the number of wiggles along 
the string as it oscillates. When a guitar string is plucked, the shape of the string does 
not match any of these simple wave patterns, but it may, indeed be composed as a 
superposition, i.e., a sum of the different patterns with different pre-factors. As a 
result, the motion of the string is decomposed as the sum of these different compo-
nents, representing the overtones associated with the tone played. Adding the possi-
bility of changing the shape and frequency of the vibration by pressing the string 
against frets on the fingerboard, we obtain the possibility of playing a variety of tones 
and harmonies, but the frequencies are always given by the natural wavy patterns of 
motion of the string. 

Figure 1. Three octaves on a piano contain tones with frequencies, shown as the height of the vertical bars. When the low C is played, the correspon-
ding string in the piano is set in motion, but not only a simple up-and down motion along the length of the string. Higher harmonics, corresponding 
to the figure 8 in the middle panel and the three wiggles in the lower panel on the right are also played by the same string. These resonate well with 

the tones played by the higher C and G keys on the instrument, because they oscillate at the same frequencies.
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In wind instruments, the compression of the air is described by a similar mathema-
tical equation to the excursions of the vibrating string, and it shows a similar variation 
along the length of the instrument, which thus dictates similar tones and overtones. 
On account of the construction of the clarinet being closed in one and open in the 
other end, the progression of overtones differs from the string and contains frequen-
cies, fn = n·f1, where n=1, 3, 5 … explores only the odd numbers (the octave is missing), 
while the saxophone, owing to its conical expansion at the end of the instrument has 
the same progression of tones as the vibrating string. These mathematical properties 
have consequences for the sound of the instruments and for the way they are played, 
and it is likely that the mathematical rules of natural instruments have influenced 
our taste for harmonies, as the interval from f1 to 2·f1 is nothing but an octave while 
the interval to 3·f1 brings us to the natural fifth (within the next octave), see Figure 1.  

Returning to 1924, and observing that atomic systems lead to the emission of light 
– not sound – at regular frequencies, it is perhaps not so strange an idea for Louis de 
Broglie to suggest that whatever happens inside the microscopic atomic particles, it 
may be described by the theory of waves. Equipped with solid experience with the 
mathematical equations that describe vibrating strings, sound, and radio signals, the 
Austrian physicist Erwin Schrödinger, managed to identify a suitable wave equation 
in late 1925 (Schrödinger 1926: 1049). In his equation, Schrödinger incorporated the 
known force between the electron and the nucleus, but he described the motion of 
the electron as if it were a wave delocalized in space, rather than as a particle following 
an orbit with time. Schrödinger’s equation was a success and it has turned out to apply 
across all microscopic systems in physics. Whenever we solve the equation, for the 
constituents of atoms, molecules, nuclei and solid-state materials, we find oscillating, 
wavy patterns of motion, and depending on the forces at play, we find the allowed 
motional energies En and Em of the system, which subsequently explain which ener-
gies may be emitted as light with a frequency obeying, hf = En-Em. 

Solving the Schrödinger Equation for the electron in the hydrogen atom produces 
wave patterns in the shape of rings and clover patterns with multiple leaves, and they 
show considerable similarity with water waves and also with the rapid motional 
pattern of the surface of, e.g., a guitar or a percussion instrument, when they are 
played by the musician. In particular, the long wavelengths and large structures are 
associated with the low frequencies while fine oscillation patterns match the higher 
frequencies, just as in musical instruments.

In combination with computer calculations, the trained physicist uses his or her 
visual intuition about waves to predict the outcome of experiments and to suggest 
methods to control physical and chemical processes. The same intuition and combi-
nation of insights are at the heart of the collaboration between scientists and musi-
cians in the quantum music project: the physicist can provide frequencies origina-
ting from different physical systems and processes, while the composers, instrument 
builders and musicians may produce an audible and artistic rendering of the same 
phenomena.

Let us briefly describe two successful projects and their main outcomes: BEC 
Music for cello and symphony etta and Super Position (Many Worlds) for two pianos, 
both by contemporary Danish composer Kim Helweg. 
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A Bose-Einstein Condensate (BEC) is a form of matter where many atoms, 
formed at high temperatures, gradually cool down and as they condense, as water 
vapour condenses on a cold surface, their individual waves coalesce into a single 
macroscopically populated wave. The phenomenon was predicted in the 1920s but 
was observed for the first time only in 1995 (see a review of the properties of BEC in 
Anglin and Ketterle 2002: 211). The condensate has characteristic oscillation frequ-
encies, and when interactions dominate the motion in one spatial dimension, we 
obtain an approximate formula for its frequencies fn = √n(n-1)·f1, with n=2,3 … The 
lowest frequency f1 in current laboratory experiments is tens or hundreds of Hz, and 
is hence in the audible range, and the wave indeed describes a variation in pressure 
and density of a real gas, i.e., a real sound. The experiments, however, have to isolate 
the BEC from disturbances by the hot air in the atmosphere, and the recording of 
the motion in the lab is therefore done with a camera rather than with a microp-
hone (Kristensen et al., 2017). By external forces, but also by the mere observa-
tion of the system, the experimentalist can induce a slushing motion of the atoms 
(Wade, Sherson and Mølmer 2015), and there are prospects of using such motion 
to sense gravity, and acceleration effects. In the BEC Music project, composer Kim 
Helweg used inspiration from the physical process of cooling and coalescence of 
the many individual atoms in the condensate and the correlated motion in the 
system, and he explored the sounds and harmonies offered by the BEC and other 
condensed matter quantum systems.

The piano suite Superposition: Many Worlds composed by Kim Helweg for 
the Quantum Music project explores the optical spectra of the hydrogen atom. 
The atom emits and absorbs radiation associated with quantum jumps between 
different wave solutions of the Schrödinger Equation. The actual frequencies 
range up to 15 digit numbers of oscillations per second, corresponding to the near 
ultraviolet spectrum of light, and the emission is neither of the acoustic type nor 
anywhere near the audible range. The composer made a choice to compose pieces 
separately for each of the so-called spectral series, named after their early scien-
tific discoverers, and corresponding to the quantum jumps ending on specific 
final states.

Lyman series:               h·fn = En – E1,     n= 2, 3, … , ending in the lowest (ground) state of the atom
Balmer series:              h·fn = En – E2,     n= 3, 4, … , ending in the first excited state of the atom
Paschen series:              h·fn = En – E3,     n= 4, 5, … , ending in the second excited state of the atom

Each of these series represents a spectrum of growing frequencies, and increase 
by a constant factor given by a simple formal expression, that we can write in 
short mathematical form as En = -1/n2. Note that as n becomes larger and larger, 
the values of En all become vanishing small, and hence the frequencies in the 
different series converge to the highest achievable values – E1 = 1, - E2=0.25, -E3 
= 0.111, … (all multiplied with a suitable basis frequency). See the appendix for 
tables with the frequencies.

For the adaption of each series to music instruments, we allow multiplication of 
the atomic frequencies by a constant value, and we subsequently find the actual tone 
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on the piano with the closest value of the frequency to the desired atomic sound. 
This is illustrated by the matching, in Figure 2, of the vertical position of the red 
bars indicating atomic frequencies, and the height of the blue vertical bars represen-
ting frequencies of the tones of the keyboard. On string or wind instruments, the 
musician can address quarter-tones or even finer divisions of the intervals and with 
digital technologies one may play the atomic frequencies, shifted to the audible range 
without rounding off to the nearest piano key. We may also employ digital techno-
logies to ensure a composition of overtones belonging to the desired spectra, rather 
than having recourse to the integer progression of overtone frequencies dictated by 
the strings in the real piano.    

Figure 2. The frequencies of the atomic spectrum of hydrogen are sorted in series. The second, so-called Balmer series, shown on the left, has frequ-
encies separated by a large gap and converging to the same value (shown as the height of the red bars in the figure). The sixth series, shown on the 
right, spans a wider range with more even frequency gaps. The actual values of the frequencies must be scaled by a very large number to go from 

optical to audible frequencies.  

Since the dawn of quantum theory, it has been a puzzle for physicists to understand 
what is actually going on at the microscopic level. The wave equation by Schrödinger 
not only introduces a new physical law and new phenomena, but it forces us to 
address the very concept of physical reality in a new way. The description of physical 
particles as waves suggests that they are delocalized in space, but still, in experiments, 
we always find them at definite but random locations when we look for them. So are 
they already at the location, where we find them, or are they really at several places at 
the same time until we look for them? 

When quantum theory is applied to several particles, a new strange feature 
appears: entanglement. According to the wave description, two particles are described 
by a wavefunction of two coordinates. If one particle is detected, the wavefunction of 
its entangled partners may change abruptly. Neither Einstein nor Schrödinger were 
willing to accept this kind of “spooky action“ (Einstein, Podolsky and Rosen 1935: 
777), and Schrödinger famously proposed that if one particle is an atom and the 
other is a cat, the strange wave properties of the atom should eventually also apply 
to the cat. Could a cat inside a box be both dead and alive if an atomic decay were 
controlling a poison mechanism within the box? The entanglement goes even further 
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such that even millions of atoms and molecules may share a single energy quantum 
such that it is stored in any one of them at the same time (a property that may be used 
for quantum memory storage; see Tordrup and Mølmer 2008). In 1952, Schrödinger 
was still occupied by the foundational questions of the theory and suggested that 
it should never be applied to single objects but always be thought of as a statistical 
description of many objects: “it is fair to state that we are not experimenting with 
single particles any more than we can raise Ichthyosauria in the Zoo“ (Schrödinger 
1952: 109). By this argument, we should only be concerned with the final count after 
carrying out the cat experiment many times: out of the many cats, some will be dead 
and some will be alive, but no cat is both dead and alive.

Experiments have become possible today that it was not possible for Schrödinger 
to predict in 1952 and today we can perform experiments with single atoms and other 
quantum systems; one of the fascinating challenges of current research is to control 
and manipulate the motion of atoms that evolve as waves. We developed a smar-
tphone game to let public players try their luck with quantum waves, and indeed 
they found useful solutions for experiments (Sørensen et al. 2016: 210). A whole new 
quantum information theory is currently being built upon the wave, randomness and 
entanglement features which, by bringing the Ichthyosaur alive, may offer 100% secu-
rity against eavesdropping on communication channels (Bennet, Brassard and Ekert 
1992: 50), very precise detection and sensing (Giovannetti, Lloyd and Maccone 2006) 
and exponentially increased performance of computers (Nielsen and Chuang 2010). 

Discussions among scientists and music experts about the artistic rendering 
and exploitation of these more profound effects: the correlations between diffe-
rent components, the randomness and the non-trivial consequence of observations 
constitute a challenging next step for the quantum music project. So far, we have 
only scratched the surface of what may result from bringing together science and 
music experts. It has been important for the project not to make music that is bound 
to illustrate or explain physical effects, but rather to exchange knowledge and use 
the physics material in its bare form as if we are being offered a new instrument with 
new properties. 

At a seminar about the Quantum Music project in 2016, the author was asked 
the question: “How can we be sure that it will sound good?“ In a somewhat cavalier 
fashion, he answered that this was entirely the responsibility of the composer and the 
musicians. Without them, how could we ever be sure that music would sound good? 
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Appendix

In this technical appendix, I provide some details on the numerical values of frequ-
encies, and the choices available when we want to play on the atoms.

In the main text I discussed the mechanism of overtones of the oscillating string 
at 2 and 3 times the frequency of the main tone played, respectively – see Figure 1. On 
a tempered piano, all semitone intervals represent the same increase of frequency by 
the factor 1.059463, such that 12 half tones yield a factor of 2 increase in frequency: an 
octave. With the tempered scale, frequencies of all tones follow a simple mathematical 
progression, and setting the A above the middle G to the concert pitch A440, i.e., a 
frequency of 440 Hz, defines the frequencies sounded by all keys on the piano. With 
12 semitones to an octave, 7 semitones correspond to an increase in frequency of 1.498, 
which is almost equal to 1.5. This makes the seventh semitone interval sound close to 
the natural fifth (the ratio 3/2 between the overtone frequencies of the string). We 
could have imagined a division of the scale in any other number of “semitones“, say 19 
or 27, but 12 is a particularly good choice: we would need 41 semitones on a tempered 
instrument to obtain an interval closer to the natural fifth! 

The atomic spectra yield optical frequencies of light that we can multiply by a 
suitable number to get values in the range of tens to thousands of Hz (oscillations 
per second). For the hydrogen atom, Niels Bohr established the existence of different 
series of frequencies given by simple mathematical expressions,

Lyman series:
Formula: fn = f0 (1/12 – 1/n2) = f0 (1 – 1/n2), n= 2, 3, … 
Values of terms in brackets: (  ) = 0.7500    0.8889    0.9375    0.9600    0.9722 …
Balmer series:
Formula: fn = f0 (1/22 – 1/n2) = f0 (1/4 – 1/n2), n= 3, 4, … 
Values of terms in brackets: (  ) = 0.1389    0.1875    0.2100    0.2222    0.2296 …
Paschen series:
Formula :fn = f0 (1/32 – 1/n2) = f0 (1/9 – 1/n2), n= 4, 5, … 
Values of terms in brackets: (  ) = 0.0486    0.0711    0.0833    0.0907    0.0955 …
8th series:
Formula :fn = f0 (1/82 – 1/n2) = f0 (1/64 – 1/n2), n= 9, 10, … 
Values of terms in brackets: (  ) = 0.0033    0.0056    0.0074    0.0087    0.0097 … 

The prefactor f0 is the same in all the atomic formulas and has the value f0= 3.28 x 
1015 Hz for the very high optical frequencies emitted by the hydrogen atom (1015 is a 
number written as 1 followed by 15 zeros). The terms in the parentheses are readily 
calculated, and the first few numbers are listed above, e.g., the first term in the Lyman 
series: (1-1/22) = (1-0.25) = 0.75, and the third term in the Paschen series (1/9-1/62) = 
(1/9-1/36) =0.0833.

To reach the audible range, we keep the numbers tabulated above, but we assume 
a different value for f0. The Lyman and Balmer series show a clustering of values near 
1.00 and 0.25, respectively, and many tones fall within the same frequency interval 
of the tempered scale. The composer therefore stretched the intervals by a factor 
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to obtain more discernible tones. As the higher series lead to much smaller values, 
but also to progressions over more regularly increasing frequencies, they span many 
different tones and a similar stretching was not deemed necessary. For details of the 
composer’s choices and elaboration of the material, see Kim Helweg’s article in the 
present issue (Helweg 2018).
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Клаус Молмер

Квантне вибрације атома и ихтиосауруса

(Сажетак)

Квантно-механички опис микроскопских феномена третира мајушне 
честице као таласе и објашњава зашто атоми и молекули апсорбују и емитују 
радијацију на одређеним фреквенцијама. У овом чланку дајем преглед физичке 
теорије таласа и разматрам сличности између атома и музичких инструмената. 
Посебно објашњавам како можемо идентификовати нове музичке скале и 
хармоније и изводити “музику атома“ путем превођења фреквенција из света 
атома у спектар звукова које људско ухо може да чује.

Данас је могуће вршити експерименте са појединачним атомима и другим 
квантним системима, а један од најфасцинантнијих изазова тренутних 
истраживања јесте контролисање и манипулација кретања атома који 
еволуирају у таласе. Између осталог, развили смо игрицу за паметне телефоне 
која омогућава најширим слојевима корисника да се поиграју са квантним 
таласима, чиме постају саучесници у експериментима (Sørensen et al. 
2016: 210). Данас се изграђује читава нова квантна информациона теорија 
заснована на карактеристикама таласа, произвољности и умрежености, 
која може омогућити стопроцентну заштиту против прислушкивања 
комуникационих канала (Bennet, Brassard and Ekert 1992: 50), затим, врло 
прецизно детектовање и осетљивост (Giovannetti, Lloyd and Maccone 2006) 
и веома побољшане перформансе компјутера (Nielsen and Chuang 2010). 

Разговори вођени између научника и музичара у вези са уметничком 
експлоатацијом корелација између различитих компоненти и не-тривијалних 
последица посматрања представљају следећи изазован корак за пројекат 
квантне музике. До сада смо само загребали површину поља могућности 
које нуди спој науке и музике. За овај прелиминарни пројекат било је важно 
да се не ствара музика која би само илустровала или објашњавала физичке 
ефекте, већ да се размене искуства и да се физички материјал употреби у 
својој најосновнијој форми – као да нам је дат нови инструмент са новим 
могућностима.

Кључне речи: таласи, атоми, музички инструменти, атомска музика, чујни спектар
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