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DEGENERATE C-ULTRADISTRIBUTION SEMIGROUPS IN LOCALLY
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A b stract The main subject in this paper are degenerate C-ultradistribution semi-
groups in barreled sequentially complete locally convex spaces. Here, the regularizing opera-
tor C' is not necessarily injective and the infinitesimal generator of semigroup is a multivalued
linear operator. We also consider exponential degenerate C-ultradistribution semigroups.
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Key Words: Degenerate C-ultradistribution semigroups, multivalued linear operators,
locally convex spaces.

1. Introduction and preliminaries

This is an expository paper. We collect results which simply follows from the
known ones. Because of that, proofs are not given. In [18] the classes of C-distribution
and C-ultradistribution semigroups in locally convex spaces (cf. [4]-[8], [10], [12],
[14]-[16], [22]-[24], [27]-[30] and references cited therein for the current state of

* This research is partially supported by grant 174024 of Ministry of Education, Science and
Technological Development, Republic of Serbia.
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theory) are introduced and systematically analyzed. The recent paper [20] motivates
us to continue the study of generalized degenerate C'-regularized semigroups in lo-
cally convex spaces in the case of ultradistribution semigroups. The main aim of
this paper is to investigate the degenerate C-ultradistribution semigroups in the set-
ting of barreled sequentially complete locally convex spaces. We refer to [5], [11],
[17], [27] and [29] for further information about well-posedness of abstract degen-
erate differential equations of first order. Here, we consider multivalued linear op-
erators as infinitesimal generators of degenerate C-ultradistribution semigroups (cf.
[3], [12], [22], [25]). The organization of the paper is as follows. In Section 1 we
expose the basic facts about vector-valued ultradistributions. Our main results are
contained in Section 2, in which we analyze various themes concerning degenerate
C-ultradistribution semigroups in locally convex spaces and further generalize some
of our recent results from [18] and [20].

1.1. Notation

We use the standard notation throughout the paper. Unless specified otherwise,
we assume that E is a Hausdorff sequentially complete locally convex space over
the field of complex numbers, SCLCS for short. For the sake of brevity and better
exposition, our standing assumption henceforth will be that the state space E is bar-
reled. By L(E) we denote the space consisting of all continuous linear mappings
from E into E and by the symbol ® (usually we will denote & if there is no risk for
confusion) denotes the fundamental system of seminorms which defines the topol-
ogy of E. Let X be also an SCLCS, let B be the family of bounded subsets of E,
and let pp(T) := sup,cpp(Tx),p € ®x, B € B, T € L(E,X). Then pp(-)
is a seminorm on L(E, X) and the system (pp)p,B)cwy x5 induces the Hausdorff
locally convex topology on L(E, X ). The Hausdorff locally convex topology on
E*, the dual space of E, defines the system (| - |3) e of seminorms on E*, where
|z*|p 1= sup,cp [(z*,x)|, x* € E*, B € B. The bidual of E is denoted by E**.
The polars of nonempty sets M C E and N C E* are defined as follows

M°:={ye E":|y(z)|<1lforallz € M}

and
Ne:={z e E: |y(z)| <1forally € N}.

If A is a linear operator acting on F, then the domain, kernel space and range of A
will be denoted by D(A), N(A) and R(A), respectively. Since no confusion seems
likely, we will identify A with its graph. Since we have assumed that the state space
E is barreled, the spaces L(E) and E* are sequentially complete ([26]) and any
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strongly continuous operator family (S(t));cjo,-) S L(E), where 0 < 7 < oo, is
locally equicontinuous. The reader may consult [31] and [17] for further information
on the Laplace transform of functions with values in SCLCS’s; cf. [2] for the Banach
space case.

We assume that (1M,,) is a sequence of positive real numbers such that My = 1
and the following conditions hold:

(M.1): M7 < My 1My, peN,

M.2): M, < AH? sup M;M,_;, p <N, forsome A, H > 1,
0<i<p
o0
M.3): > MAZ: < o0.
p=1

Every employment of the condition

o0
M3):sup S Moo o
pEN g=p+1

which is a slightly stronger than (M.3)’, will be explicitly emphasized.

Let s > 1. Then the Gevrey sequence (p!°) satisfies the above conditions. The
associated function of sequence (M) is defined by M (p) := sug In 1\%’ p > 0;
M(0) :=0, M(\) := M(|A]), A € C\ [0,00). "

Let us recall that the spaces of Beurling, respectively, Roumieu ultradifferen-
tiable functions are defined by DM») := DMp)(R) = indlimK@@RD%M” ),
spectively, DIMp} .= DIMp}(R) = indlimK@@RD;M”}, (where K goes through

all compact sets in R where D%M” )= projlim, %OOD%" ’h, respectively, DE(M” b

Ire-

indlimy, D",
Mp,h le’e)
D" = {6 € C*(R) : supp(¢) C K, [|¢llms,n,x < 0},
hP P (¢
Pllag, nx = Sup{‘MU‘ te K, pe NO}-
V4

Spaces of tempered ultradistributions are defined as strong dual of corresponding
test spaces:

SMp)(R) := proj lim SM»F(R), resp., SIMp}(R) := ind lim SM»*(R),
k—o0 k—0
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where
SMHR) = {6 € C®(R) : |6l < o0}, k>0,

a+pB

k
l|az, 1 := sup (1+ 2521 (@#)| : t e R, o, B €Ny p.
My Mg

Henceforth the asterisk * stands for both cases.

Let ) # ©Q C R. The spaces D™*(F) := L(D*, E), Dg,, D§, £, &> Pg(E),
Dy (E) and S((E) are defined as in distribution case. We know that there exists a
regularizing sequence in D*. Regularizing sequence in D* is any sequence (o, )neN
in D}, for which there exists a function p € D* such that [*°_p(t) dt = 1, supp(p) C
[0,1] and p,,(t) = np(nt), t € R, n € N. We define the convolution products ¢ * 1)

and ¢ *q ¢ by

pru(t)i= [ ot = 9)u(s)ds and pxav(®)i= [ olt - (s)ds, ¢ <R
~% 0

for ¢, 1 : R — C locally integrable functions. Notice that ¢ * 1) = ¢ *q 1, provided
that supp(¢) and supp(¢)) are subsets of [0,00). Given ¢ € D* and f € D™, or
p € & and f € £, we define the convolution f x @ by (f * ¢)(t) :== f(e(t — ),
t € R. For f € D™, or for f € £, define f by f(¢) := f(o(—)), ¢ € D*
(p € £*). The convolution of two ultradistributions f, g € D’*, denoted by f * g, is
defined by (f * g)(¢) := g(f * ¢), ¢ € D*.

We recall the definition of a multivalued map (multimap) (cf. [9] by R. Cross,
[11] by A. Favini-A. Yagi). Let X and Y be two SCLCSs. Then a multivalued map
(multimap) A : X — P(Y) is said to be a multivalued linear operator (MLO) iff the
following holds:

(i) D(A) :={x € X : Az # (0} is a subspace of X;
() Az+ Ay CA(z+y),z, y € D(A) and Mz C A(\x), A € C,z € D(A).

If X =Y, then it is also said that 4 is an MLO in X. The inverse A~! of an MLO
is defined by D(A™!) := R(A) and A~ 'y := {z € D(A) : y € Ax}. Itis easily
seen that A~! is an MLO in X, as well as that N(A~!) = A0 and (A~1)~1 = A If
N(A) = {0}, i.e., if A~ is single-valued, then A is said to be injective.

If A, B: X — P(Y) are two MLOs, then we define its sum .A + B by

D(A + B) := D(A) N D(B)

and (A + B)z := Az + Bz, x € D(A+ B). It can be simply checked that A + B is
likewise an MLO.
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LetA: X — P(Y)and B:Y — P(Z) be two MLOs, where Z is an SCLCS.
The product of A and B is defined by D(BA) := {z € D(A) : D(B) N Az # 0}
and BAz := B(D(B) N Az). Then BA : X — P(Z) is an MLO and (BA)~! =
A~1B~L. The scalar multiplication of an MLO A : X — P(Y’) with the number z €
C, zA for short, is defined by D(zA) := D(A) and (2 A)(z) := zAx, x € D(A). It
is clear that 24 : X — P(Y)isan MLO and (wz)A = w(zA) = z(wA), z, w € C.

The integer powers of an MLO A : X — P(X) is defined recursively as follows:
A® =: I;if A" is defined, set D(A") := {z € D(A" 1) : D(A) N A" 1z # 0},
and A"z = (AA" )z = U epaynan-1o AYs © € D(A™). Itis well known that
(AL = (U H iAo = (A" = A7, n € Nand D((A — A)") = D(A"),
n € Np, A € C. Moreover, if A is single-valued, then the above definitions are
consistent with the usual definition of powers of .A.

If A: X — P(Y) is an MLO, then we define the adjoint A* : Y* — P(X™*) of
A by its graph

A* = {(y*,az*) €Y* x X*: (y*,y) = (z*,x) for all pairs (z,y) € A}.

In [17], we have recently considered the C'-resolvent sets of MLOs in locally
convex spaces (where C' € L(X) is injective, C. A C AC). The C-resolvent set of
an MLO A in X, pc(A) for short, is defined as the union of those complex numbers
A € C for which R(C) € R(A — A) and (A — A)~1C is a single-valued bounded
operator on X. The operator A — (A — A)~1C is called the C-resolvent of A (\ €
pc(A)). Here, we analyze the general situation in which the operator C € L(X) is
not necessarily injective. Then the operator (A — A)~1C is no longer single-valued,
which additionally hinders our considerations and work.

2. Properties of degenerate C-ultradistribution semigroups in locally convex
spaces

Throughout this section, we assume that C' € L(FE) is not necessarily injective
operator. Since E is barreled, the uniform boundedness principle [26, p. 273] implies
that each G € D™*(L(F)) is boundedly equicontinuous, i.e., that for every p € ®
and for every bounded subset B of D*, there exist ¢ > 0 and ¢ € ® such that
p(G(p)r) < cq(x), p € B, z € E.

Definition 2.1. Let G € D{f(L(E)) satisfy CG = GC. Then it is said that G is a
pre-(C-UDS) of x-class iff the following holds:

Glpro)C=G(0)G(¥), v, Y €D (CS.D)



58 M. Kostié, S. Pilipovi¢, D. Velinov

If, additionally,
N(©G):= (] N(G(g) = {0}, (CS.2)

»€Dy

then G is called a C-ultradistribution semigroup of *-class, (C-UDS) of x-class in
short. A pre-(C-UDS) G is called dense iff

R(G) == |J R(G(p)) is dense in E. (C.S.3)
peD]

If C = I, then we also write pre-(UDS), (UDS), instead of pre-(C-UDS), (C-
UDS).

Suppose that G is a pre-(C-UDS) of *-class. Then G(¢)G(v)) = G(¢)G(p) for
all , ¢ € D* and NV (G) is a closed subspace of E.

The structural characterization of a pre-(C-UDS) G of x-class on its kernel space
N (G) is described in the following theorem (cf. [15, Proposition 3.1.1] and the proofs
of [22, Lemma 2.2], [15, Proposition 3.5.4]).

Theorem 2.1. Let (M),) satisfy (M.3), let G be a pre-(C-UDS) of x-class, and let
the space N'(G) be barreled. Then, with N = N (G) and G being the restriction
of Gto N (G1 = G|n), we have: There exists a unique set of operators (1}) jen, in
L(N(G)) commuting with C' so that G1 = > 22 §U) @ Ty, T,00 = (—1)jTg+1,
j € Nand the set {M;T;L’ : j € No} is bounded in L(N'(G)), for some L > 0 in
the Beurling case, resp. for every L > 0 in the Roumieu case.

Let G € Dy (L(E)), and let T' € &, i.e., T is a scalar-valued ultradistribution
of x-class with compact support contained in [0, c0). Define

G(T) = {(x,y) EEXE:GTxp)x=G(p)y forall ¢ € DS}.

Then it can be easily seen that G(T') is a closed MLO; furthermore, if G € D (L(E))
satisfy (C.S.2), then G(T') is a closed linear operator. Assuming that the regularizing
operator C' is injective, definition of G(T") can be equivalently introduced by replac-
ing the set D;j with the set ’Dﬁ)’e) for any € > 0. In general case, for every ¢ € D*,
we have ¢y = 1|y ) € ELF, where 1j0,00) stands for the characteristic function
of [0,00), so that the definition of G(¢4) is clear. We define the (infinitesimal)
generator of a pre-(C-UDS) G by A := G(—¢") (cf. [18] for more details about non-
degenerate case, and [3, Definition 3.4] and [12] for some other approaches used in
degenerate case). Then N (G) x N (G) C A and N (G) = A0, which simply implies
that A is single-valued iff (C.S.2) holds. If this is the case, then we also have that the
operator C' must be injective: Suppose that C'x = 0 for some x € F. By (C.S.1), we
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get that G(p)G(¢Y)x = 0, ¢, ¢ € D. In particular, G(¢)x € N(G) = {0} so that
G(¢)x =0, € D. Hence, x € N (G) = {0} and therefore = = 0.

Further on, if G is a pre-(C-UDS) of x-class, T' € &; and ¢ € D*, then
G(p)G(T) C G(T)G(¢), CG(T) C G(T)C and R(G) C D(G(T)). If Gis a
pre-(C-UDS) of *-class and ¢, ¢, 1» € D*, then the assumption ¢ (t) = ¥(t), t > 0,
implies G(¢) = G(v¥). As in the Banach space case, we can prove the following
(cf. [15, Proposition 3.1.3, Lemma 3.1.6]): Suppose that G is a pre-(C-UDS) of *-
class. Then (Cz,G(¢)z) € G(¥4), ¢ € D*, 2 € E and A C C~LAC, while
C—1AC = A provided that C is injective. The following two propositions holds
in degenerate C'-ultradistribution case (see [20] for degenerate C-distribution case).
Note that the reflexivity of the space E implies that the spaces £* and E** = E are
both barreled and sequentially complete locally convex spaces.

Proposition 2.1. Let G be a pre-(C-UDS) of x-class, S, T € &, ¢ € D,
¥ € D* and x € E. Then we have:

m

@) (G(o)x, G(T *---xTxp)x) € G(T)™, m e N.

(i) G(S)G(T) € G(S = T) with D(G(S)G(T)) = D(G(S = T)) N D(G(T)),
and G(S)+ G(T) C G(S+T).

(i) (G()z, G(—¢')z —¢(0)Cx) € G(=5").
(iv) If G is dense, then its generator is densely defined.

The assertions (ii)—(vi) of [15, Proposition 3.1.2] can be reformulated for pre-(C-
UDS)’s of *-class in locally convex spaces.

Proposition 2.2. Let G be a pre-(C-UDS) of x-class. Then the following holds:

(i) C((R(G))) C R(G), where (R(G)) denotes the linear span of R(G).

(ii) Assume G is not dense and CR(G) = R(G). Put R := R(G) and H := G p.
Then H is a dense pre-(C1-UDS) of x-class on R with Cy = C|p.

O

(iii) The dual G(-)* is a pre-(C*-UDS) of *-class on E* and N'(G*) = R(G) .

(iv) If E is reflexive, then N'(G) = R(G*) .

(V) The G* is a (C*-UDS) of x-class in E* iff G is a dense pre-(C-UDS) of *-class.
If E is reflexive, then G* is a dense pre-(C*-UDS) of x-class in E* iff G is a
(C-UDS) of x-class.
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The following proposition has been recently proved in [18] in the case that the
operator (' is injective (cf. [12, Proposition 2]). By the proof of the statement in [18],
it is clear that the injectivity of C' is superfluous.

Proposition 2.3. Suppose that G € D (L(E)) and G(¢)C = CG(yp), ¢ € D*.
Then G is a pre-(C-UDS) of x-class if and only if

G(£)G(¥) = G(9)G(¥') = »(0)G()C — 9(0)G(¥)C, ¢, ¥ € D".

In [18], we have recently proved that every (C-UDS) of x-class in locally convex
space is uniquely determined by its generator. Contrary to the single-valued case,
different pre-(C-UDS)’s of *-class can have the same generator.

Remark 2.1. Suppose that G € Dy (L(E)), G(¢)C = CG(p), p € D* and A is
a closed MLO on FE satisfying that G(¢).A C AG(p), ¢ € D* and

G(—¢' )z — p(0)Cx € AG(p)z, x€E, ¢ € D*. (2.1)
The following statements hold (see [18]):
(i) If A = A s single-valued, then G satisfies (C.S.1).

(ii) If G satisfies (C.S.2) holds, C' is injective and A = A is single-valued, then G
is a (C-UDS) of *-class generated by C~1 AC.

As we have already seen, the conclusion from (ii) immediately implies that A = A
must be single-valued and that the operator C' must be injective.

Concerning the assertion (i), its validity is not true in multivalued case: Let C' =
I,let A= FE x E,and let G € D{f(L(E)) be arbitrarily chosen. Then G commutes
with A and (2.1) holds but G need not satisfy (C.S.1).

Next, we give the definition of an (g—)exponential pre-(C-UDS) of x-class.

Definition 2.2. Let G be a pre-(C-UDS) of x-class. Then g is said to be an expo-
nential pre-(C-UDS) of *-class iff there exists w € R such that e™“'G € S™*(L(E)).
We use the shorthand pre-(C-EUDS) of *-class to denote an exponential pre-(C-UDS)
of x-class.

Definition 2.3. Let G be a pre-C-ultradistribution semigroup (pre-C-distribution
semigroup). Then G is said to be a quasi-equicontinuous exponential (short, (g)-
exponential) pre-C-ultradistribution semigroup (pre-C-distribution semigroup) if for
every p € ® and bounded subset B € E there exist M, > 1, w, > 0 and g,
seminorm on $*(R) (S(R)) such that

sup p(G(p)z) < Mpe*? g,(p),
x€eB
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for all ¢ € S§(R) (p € Sp(R)). We use the shorthand pre-¢g-(C-EUDS) (pre-g-(C-
EDS)).

Concerning degenerate C-ultradistribution semigroups, exponential degenerate
C-ultradistribution semigroups and degenerate (q-)exponential C-ultradistribution semi-
groups, we can give the following theorems (see [19]).

Theorem 2.2. (i) Suppose that there exist| > 0, 3 > 0 and k > 0, in the

(ii)

Beurling case, resp., for every | > 0 there exists $; > 0, in the Roumieu case,
such that Q5" .= {\ € C: RA > M(IA]) + 8} C pc(A), resp. 5" =
(A e C:RX> M(N) + B} C pe(A), the mapping X — (A — A)~1Cxz,
A€ Ql(]‘g” ), resp. A € Ql{%p }, is continuous for every fixed element v € F,
and the operator family {e=M*A)(X — A)~1C : ) € Ql(f‘g”)} C L(E), resp.
{e=MUNI(N - A)"1C: X e Qi{%p}} C L(E), is equicontinuous. Denote by
L, resp. 'y, the upwards oriented boundary of Ql(%[” ), resp. Q;{’%p s Define, for
every x € E and ¢ € D*, the element G(p)x with

G(o)r = (—1) / PN (AN —A)"Cxd\, z€ E, p €D, (2.2)
r

in the Beurling case; in the Roumieu case, for every number k > 0 and for
every function ¢ € Di{_]\ip g}, we define the element G(p)x in the same way as
above, with the contour T replaced by T'yy,y. Then G € Dy (L(E)) is bound-
edly equicontinuous, G(p)C = CG(p), ¢ € D*, G(p)A C AG(yp), ¢ € D*
and AG(p)z = G(—¢')z — ¢(0)Cz, z € E, ¢ € D (p € D*). Then, G is
a pre-(C-UDS) of *-class.

Suppose that A is a closed linear operator on E satisfying that there exist a > 0
such that {\ € C : R\ > a} C pc(A) and the mapping A\ — (A — A)~Cux,
R > a is continuous for every fixed element x € E. Suppose that there exists
a number k > 0, in the Beurling case, resp., for every number k > 0, in the
Roumieu case, such that the operator family {e=MFEX) (X — A)=1C : R\ >
a} C L(E) is equicontinuous. Set

a-+ioco
G(p)z = (i) / SN —A)'Cdr, zeE, peD,
Then G € D (L(E)) is boundedly equicontinuous, e~“'G € 8" (L(E)) for
all w > a, G(p)C = CG(p), ¢ € D*, G(p)A C AG(y), ¢ € D* and
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AG(p)x = G(—¢ )z — (0)Cz, x € E, p € D (p € D*). Then, Gisa
pre-(C-EUDS) of x-class.
Remark 2.2. Following J. Chazarain [6], we define (M),)-ultralogarithmic region
Ay, of type [ as

Aasi={N€T : RA> aM (SN + B,

for o, B > 0,1 € R. The first part of the Theorem 2.2 can be reformulated with the

region ng\;p ) replaced by A, g

Let & > a. By I'y (I'g) we donte the upwards oriented boundary of the ultra-
logarithmic region A, g; (the right line connecting the points & — ico and & + ioo)
and let

G(p)z = (—i)/ NN —A)"zd\, zeE, oeD™M) (23
Iy (Ta)

The abstract Beurling space of (M),) class associated to a closed linear operator A is
defined as in [7]. Following [7], we put E(M») (A) ::projlimhﬁJrooE,(lM”) (A), where

P
EMD (4) = {x € Do) [zl = sup —— < o0
forallh > 0and g € ®}‘

Then, for each number 7 > 0 the calibration (|| - ||§l]\§p ))q€® induces a Hausdorff
sequentially complete locally convex space on E}(lMp )(A), E}(f/\/lp )(A) - E}(lMp )(A)

provided 0 < h < h/ < 0o, and the spaces E}(LMP )(A) and E(Mp) (A) are continuously
embedded in E.

Theorem 2.3. Let A be a closed linear operator A and there exist constants
I>1 a>0,6>0andk > 0 such that Ao g; C p(A) (RHP, = {\ € C:
RN > a} C p(A)). Let for each seminorm q € & there exist a number cq > 0 and a
seminorm v € ® such that

q(()\ — A)flx) < cqu(k”)‘Dr(x), re B, NelNypy (RHPQ). 2.4)

Moreover, assume that G, defined through (2.3), is a (UDS) ((EUDS)) of Beurling
class generated by A (i.e., that G satisfies (C.S.2)), and that (Mp) satisfies (M.1),
(M.2) and (M.3). Then the abstract Cauchy problem (ACP) has a unique solution
u(t) for all z € EMp)(A).
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Remark 2.3. We would like to observe that Theorem 2.2 and Theorem 2.3 cannot
be formulated for multivalued linear operators.

Now we will reconsider some conditions (originally introduced by J. L. Lions
[24], for the definition of dense distribution semigroups and for ultradistribution case
the conditions in [18]) in our new framework. Suppose that G € Dy (L(E)) and
G commutes with C'. Like in the case of degenerate C'-distribution semigroups (see
[20]), we analyze the following conditions for G:

(d1) Gle*¥)C =G(p)G(¥). p, ¥ € D,
(ds) R(G) is densein F,

(dy) for every z € R(G), there exists a function u, € C([0,00) : E) so that
uz(0) = Cz and

G(p)r = /0 T sty dt, e D",

(ds) (Cx,G(Y)x) € G(¥4), € D*,z € E.

We will discuss the connections of the previously given conditions, (d;), (d2),
(d3), (ds4) and (ds). Let G € D{(L(E)) be a pre-(C-UDS) of x-class. Then G
satisfies (d;) and from previously G satisfies (ds5). Also, by the proof of [15, Propo-
sition 3.1.24], we have that G also satisfies (d4). On the other hand, it is well known
that (dy), (d4) and (C.S.2) taken together do not imply (C.S.1), even in the case that
C = I; see e.g. [15, Remark 3.1.20]. Furthermore, if (d;), (d3) and (d4) hold then
(ds) holds, as well. To prove this, fix z € R(G) and ¢ € D*. Then it suffices to
show that (C'z,G(¢)x) € G(¢+). Suppose that (p,) is a regularizing sequence and
u,(t) is a function appearing in the formulation of the property (d4). From the proof
of [15, Proposition 3.1.19], for every n € D, we have

G(pn)G(p+ xn)z = G((¢4 * pn) xn)Cx = G(N)G (P * pp)x

oo

— () / (1 % po) (D (1) dt

0
~6) [ thu(t)dt = GnG(e)a, n— o
G(pn)G(p+ xm)x = Gp+ *n* pn)Cr — G(p4 xn)Ca, 1 — 0.

Hence, G(¢+ *n)Cxz = G(n)G(p)z and (ds) holds, as claimed. On the other hand,
(dy) is a very simple consequence of (ds). To see this, observe that for each ¢ € D}
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and ¢ € D* we have ¥4 x ¢ = 1 % ¢ = ¢ *¢ 1, so that (d5) is equivalent to say
that G(¢ %o ¢¥)C = G(v)G(¥) (p € D, ¢ € D*). In particular,

Gp)G(¥) =G()G(p), ¢ €Dy, ¢ €D, (2.5)

Now, let (d5) holds, ¢ € Df and ¢, n € D*. Note that 1) x 14 * @ = (P *on)4+ * p.
Then (cf. also [22, Remark 3.13]):

G(p)G ()G () = CG(ns x 9)G(¢)

= CG (4 * 11 * ¢)
=CG(($xom)+xp)C
= CG(p)G(¢ *on)
=G(p)G (¢ xn)C. (2.6)
By (2.5)-(2.6), we get
GGG (p) = G(¥ xon)CG (). 2.7

By (2.5)—(2.7), we have the following conclusions:

(i) (ds) and (d3) together imply (C.S.1); in particular, (d; ), (d3) and (d4) together
imply (C.S.1). This is an extension of [15, Proposition 3.1.19].

(i) (ds) and (d2) together imply that G is a (C-UDS) of x-class; in particular,
A = A must be single-valued and C' must be injective.

On the other hand, (d5) does not imply (C.S.1) even in the case that C' = I. A simple
counterexample is G € D (L(E)) given by G(¢)z := p(0)z, z € E, p € D*.

The exponential region E(a,b) has been defined for the first time by W. Arendt,
O. El-Mennaoui and V. Keyantuo in [1]:

E(a,b) := {A €C:RA>b, | < eam} (a, b>0).

Remark 2.4. Suppose that there exist [ > 0, 8 > 0 and k > 0, in the Beurling
case, resp., for every [ > 0 there exists §; > 0, in the Roumieu case, such that the
assumptions of [20, Theorem 4.15] hold with the exponential region E(a, b) replaced
with the region

Q) = (A e C:RA> MUA) + B,
resp.
QU = (A e C:RA > MUA|) + Bi)
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Define G similarly as above. Then G € D} (L(E)), G commutes with C and A,
and (2.1) holds. But, in the present situation, we do not know whether G has to satisfy
(C.S.1) in degenerate case. This is an open problem we would like to address to our
readers.

An example of exponential degenerate ultradistribution semigroup of Beurling
class can be given by using the consideration from [21, Example 3.25]. By Propo-
sition 2.2(iii), the duals of non-dense (C-UDS)’s of x-class serve as examples of
pre-(C*-UDS)’s of *-class, as well.
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