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Abstract The first part of this review looks at the fundamental properties of hydroxyapatite, the 
basic mineral constituent of mammalian hard tissues, including the physicochemical features that 
govern its formation by precipitation. A special emphasis is placed on the analysis of qualities of 
different methods of synthesis and of the phase transformations intrinsic to the formation of 
hydroxyapatite following precipitation from aqueous solutions. This serves as an introduction to 
the second part and the main subject of this review, which relates to the discourse regarding the 
prospects of fabrication of ultrafine, nanosized particles based on calcium phosphate carriers 
with various therapeutic and/or diagnostic agents coated on and/or encapsulated within the 
particles. It is said that the particles could be either surface-functionalized with amphiphiles, 
peptides, proteins or nucleic acids or injected with therapeutic agents, magnetic ions or 
fluorescent molecules. Depending on the additive, they could be subsequently used for a variety 
of applications, including the controlled delivery and release of therapeutic agents 
(extracellularly or intracellularly), magnetic resonance imaging and hyperthermia therapy, cell 
separation, blood detoxification, peptide or oligonucleotide chromatography and ultrasensitive 
detection of biomolecules, and in vivo and in vitro gene transfection. Calcium phosphate 
nanoparticles as carriers of therapeutic agents that would enable a controlled drug release to treat 
a given bone infection and at the same be resorbed in the body so as to regenerate hard tissue lost 
to disease are emphasized hereby as one of the potentially attractive smart materials for the 
modern medicine. 
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Introduction: Hydroxyapatite as the main constituent of bone 
 

Hydroxyapatite (HAP) is to most people known as the mineral component of bone1,2,3. 
Therein, stiff HAP crystals are responsible for imparting an appropriate compressive strength, 
whereby collagen fibers, able to dissipate energy effectively, provide superior elastic properties, 
thus ameliorating the brittleness of the sole HAP4. However, the exceptional stiffness and 
strength of bone come not only from the synergetic combination of material properties of its 
mineral and organic components, but from its hierarchical, superstructural organization as well5.  

Bone is an organ that not only does provide a basic mechanical support to the body by 
generating and transferring forces that are involved in locomotion, but it also has various other 
functions6. For example, by storing minerals within, mostly calcium and phosphate, it presents 
the main mineral reservoir for the body. Absorption and release of salts is the mechanism by 
which bones buffer the blood and prevent excessive pH changes. Bones, such as skull or ribs, 



also serve to physically protect vital internal organs, including brain, heart and lungs. Some 
bones also act as fabrics for producing red and white blood cells. Bone has formed in co-
evolution with the surrounding tissues of organisms and the environment. In eukaryotic cells, 
calcium ions play a plethora of functions, including that of a messenger in various signal 
transduction pathways. Calcium-activated ATPase, Na+/Ca2+ exchangers, calcium channels and 
intracellular calcium binding proteins maintain a fine Ca2+ homeostasis in cells such as 
odontoblasts. On one hand, a controlled imbalance of internal calcium levels is a precursor for 
the bone-building activity, which, unlike in the case of amelogenesis and dentinogenesis, always 
proceeds through external accretion. On the other hand, increased amounts of intracellular Ca2+ 
may result in uncontrolled secretion and internal precipitation. Namely, Ca2+ is known to be a 
part of harmful deposits in the body, such as atherosclerotic plaque, kidney stones and dental 
calculi7. It also has a strong tendency to bond with many proteins, particularly phosphorylated 
ones. In case of ATP, its aggregation may be induced thereby, resulting in the loss of biological 
function. On the other hand, binding of Ca2+ to phosphorylated proteins involved in 
biomineralization, such as osteopontin in bone or dentin phosphophoryn, is a vital step in 
formation of hard tissues of bone and dentin8.  

Aside from its mineral and protein components, bone is also populated by cells, 
macromolecules and blood vessels. Three types of cells are involved in maintaining a healthy 
bone structure: a) osteocytes involved in signal transduction of mechanical stimuli; b) 
osteoblasts, which are derived from mesenchymal stem cells and secrete collagenous proteins, 
thereby building the bone material; and c) osteoclasts, which are derived from hematopoietic 
marrow cells and secrete acids and proteases, thereby degrading the mineralized tissue. RANKL, 
a protein molecule bound to the osteoblast surface and serving to activate osteoclasts has been 
intensively investigated because of its role in facilitating an optimal communication between 
these two types of cells9. Overexpression of RANKL has been linked to a variety of degenerative 
bone diseases, including rheumatoid arthritis and osteoporosis10. Through the cooperative action 
of osteoblasts and osteoclasts, bone is constantly being remodeled in response to the 
physiological requirements. Julius Wolff was the first to propose that bone remodels itself when 
force is exerted on it by the mechanism according to which the internal architecture of the 
trabecular bone first undergoes adaptive changes when placed under load, followed by secondary 
changes to the external cortical portion of the bone11. An evidence of an impressive remodeling 
capacity of bone has come from the observed modifications in bone shape and density in 
astronauts subjected to microgravity conditions for prolonged periods of time12. Bone is, for 
example, often regarded as a living mineral due to its continual growth and dissolution, 
formation and degradation, renewal and remodeling, taking place during the organism’s lifetime.  



 
Fig.1. Bone (left) is a complex, hierarchically structured biological material in which the building components are 
precisely arranged at scales spanning half a dozen of orders of magnitude. The image on the left shows sketches of 
the structural elements of cortical/compact bone (which comprises the harder, outer layer of the cross-section of 
bone, surrounding the softer trabecular/spongy/cancellous bone) at different scales. The image on the upper right 
side shows the nanostructure of mineralized collagen fibers in bone, whereby the image below displays the fine 
structure of dental enamel, the hardest substance in the body. Within the former structure, HAP particles are 
incorporated within the organic matrix, whereas the latter structure is composed of an almost pure mineral with 
elongated HAP nanofibers connected into bundles and forming equally uniaxially directed enamel rods. Reprinted 
with permission from Refs.13, 14, and 15. 

 
Many mysteries, such as the role of “sacrificial” bonds that break under stress, but only to 

be reformed at a later time, imparting durability and resilience to hard tissues, still surround the 
superior functioning of this basic material of Nature16. Many new functions of bone have also 
been gradually revealed over time. It has now been established that bone does not only act as a 
reservoir for minerals, primarily calcium and phosphate, which circulate through blood in 
supersaturated concentrations, but also stores growth factors, fatty acids, heavy metals and other 
toxic elements, and is involved in buffering the blood by controlled release of alkaline salts. Be 
that as it may, bone presents a connective tissue and a failure of the ability to stay “connected” 
and properly transmit stress throughout the body has an implication of slowly bringing about 
dysfunction of many other, close or distant segments of skeleton and the body. In view of that, 
finding the ways to heal the impaired bone tissue in timely manner can be regarded as one of the 
most important tasks that medicine can contribute to. In view of that, bone research has a special 
meaning in the world of medicine. However, understanding bone is a challenging task for the 
modern scientists, especially because it requires an atypical inter-disciplinary element in one’s 
approach, explained by the fact that bone stands at the interface between many separate fields of 
science. The more one focuses one’s attention on finer levels of organization, the more of the 
biological approaches cede their place to fundamental physicochemical methods of probing bone 
structure and properties.  

And just as usual, as scientific attention is focused to ever smaller physical details, the 
things do not get simplified, but become ever more complex instead17. Hence, the structural 
arrangement of nanosized HAP crystals within the collagen matrix is still a subject of scrutiny. It 



is still not resolved whether mineralization first occurs within the 40 nm wide gap or the 27 nm 
wide overlap region of collagen fibers. Contrary to earlier assumptions, a recent cryo-TEM study 
has shown that upon mineralization of collagen the mineral first fills the overlap region and only 
then it proceeds to incorporate itself within the gap region18. Two forms of HAP crystals in 
dentin and bone can also be distinguished based on where they are found: extrafibrillar and 
intrafibrillar19. The former are larger nanocrystals (plate-shaped with 2 – 3 nm in thickness and a 
few tens of nanometers in length and width) existing in-between individual fibrils (that is, 
bundles of collagen fibers having ~ 1.5 – 3.5 nm in diameter, and are essentially individual 
elongated, triple helix molecules), whereas the latter are found to figure as links between 
individual fibers along their long axis. However, the role of each has not been discerned yet20.  

Also, just as the structural water has been added to the basic structural diagrams of 
proteins in recent years21, its role for the proper mechanical performance of hard tissues has been 
increasingly pointed out by researchers22. Collagenous tissues, such as bone or dentin, which 
contain approximately 70 wt% apatite, 20 wt% collagen and 10 wt% water (with only about 3 % 
of noncollagenous proteins, including some polysaccharides as well), are nowadays known to 
partly owe their mechanical properties to the structural water23,24. Hydrated dentin is, for 
example, shown to dramatically degrade in toughness following its dehydration25,26. Also, in 
case of collagen molecules wherein backbone hydrogen bonding between polypeptide chains in 
its triple-stranded structure does not present the major stabilizing force, unlike in the case of α–
helices and β–sheets, additional enthalpic contributions are known to come from water molecules 
that form a “scaffold” around the surface of the triple helix, implying that water plays an intimate 
role in stabilizing this protein27. This observation coincides with the recently observed 10-fold 
drop in tensile properties of single fibrils of collagen following desorption of the bound water in 
vacuum, even though the strength of the molecule was the same in water and air28.  

Hence, even though the fascinating properties of bone are products of precise and 
intricate arrangement of its building blocks on many different levels – from nanometer to 
millimeter scales (Fig.1) – the complexity of each one of these building blocks is equally 
complex as to deserve paying sole research attention thereto. In fact, the complexity of this 
material has ever since puzzled scientists involved in bone research; hence, the name of this 
compound, apatite, derives from Greek απαταο, which means “to deceive”. The respective 
mineral was, however, named so because it had easily been mistaken for other, more precious 
minerals29; yet, a drop of lime juice was sufficient to dissolve it. Unlike some other similarly 
complex materials, such as doped manganites which exhibit an enormous set of electric and 
magnetic behaviors depending on the structural arrangement of the constitutive ions30,31, in case 
of HAP the main emphasis is on the breadth of possible mechanical properties depending on 
different phase arrangements and the structure and morphology of the compound. Another 
remarkable feature of this material is a considerably low crystal growth rate even under relatively 
high supersaturations. The reason for this is thought to lie in the complex growth mechanism that 
involves precipitation of amorphous, ~ 1 nm sized solid units called Posner’s clusters in the first 
stage of the process, and their aggregation and ionic rearrangement followed by an increased 
compactness and crystallinity in the second stage32. Owing to the fact that this mechanism 
resembles the one of the growth of protein and viral crystals that involves chirality selection and 
orientation arrangements, the low crystal growth rate of HAP is often compared to that of these 
biological compounds33. Low crystallinity of particles precipitated under physiological 
conditions and stoichiometric sensitivity to mildest changes in synthesis conditions are additional 



characteristics of the formation of HAP, which will be discussed more in the following section. 
All of these fundamental peculiarities are currently subject of intensive scrutiny. 

The main content of this review is divided to two parts: fundamentals and application. In 
the first part, the reader will get acquainted with the fundamental properties of HAP and the 
chemistry of its formation, whereas in the second part the advanced applications of this 
compound will be numbered and discoursed on.  

 
1. Fundamentals  

 
1.1. Chemical identity and basic properties 
 
HAP is a mineral from the family of apatites, the general formula of which is M5(ZO4)3X, 

where M is a rare-earth metal, such as Ca2+, Cd2+, Sr2+, Ba2+, Pb2+, Zn2+ or Mg2+, ZO4 could be 
PO4

3-, CO3
2- or SO4

2-, and X is OH-, F-, Cl- or CO3
2-. Whereas Ca5(PO4)3OH is the formula for 

HAP, Ca10(PO4)6(OH)2 is the formula of the unit cell thereof, and its pKsp (Ksp = solubility 
product) equals 58.65 at 37 oC. HAP is, therefore, the most stable calcium orthophosphate (CAP) 
phase in the pH range of 4.2 – 12.4. The unit cell of stoichiometric HAP can also be represented 
with the following formula: M14M26(PO4)6(OH)2, where M1 and M2 are  two different 
crystallographic positions for ten calcium atoms. Four Ca atoms in the unit cell of HAP thus 
occupy M1 position where they are surrounded by nine oxygen atoms which belong to PO4 
tetrahedra. The other 6 Ca atoms occupy M2 site where they are coordinated by six O atoms of 
the PO4 tetrahedra and one of the two OH- groups34,35. In biological conditions, HAP is subject 
to an extensive substitution of ions, so that human bone is, for example, best described as 
(Ca,Z)10(PO4,Y)6(OH,X)2, where Z = Na+, Mg2+, K+, Sr2+, etc., Y = CO3

2-, HPO4
2-, and X = Cl-, 

F-. 
Irrespective of whether it is found in enamel, dentin, cementum or bone, biogenic apatite 

is always impure and non-stoichiometric. The major impurity is CO3
2- (3 – 8 wt%), whereby 

minor impurities include Na+ (0.5 – 1 wt%), Mg2+ (0.4 – 1.2 wt%), K+ (0.03 – 0.08 wt%), Cl- 
(0.01 – 0.3 wt%), and F- (0.01 –  0.06 wt%). Some of these substitutions, such as OH- → Cl-, 
PO4

3- → CO3
2- or Ca2+ → Mg2+, Sr2+, are known to weaken the apatite structure and make it 

more soluble, whereas others, such as OH- → F-, are known to additionally strengthen it and also 
lessen its solubility36. In fact, most of these impurities, except fluoride, contribute to increased 
solubility of the resulting apatite stoichiometry, which explains why fluorine is added to 
toothpaste formulations37, although health risks concerning its unfavorable effects on the gut 
flora and indications that it may even act as a neurotoxin38 are currently under research. Also, 
extensive amounts of fluoride in the apatite structure have been shown to lead to increased 
porosity and weakening of the material39.  

CO3
2- is the most common dopant in biological apatite40, and carbonated HAP is shown 

to have an improved bioactivity compared to pure HAP, which has been attributed to the greater 
solubility of the carbonated phase41. Incorporation of CO3

2- ions within the HAP crystal structure 
has also been shown to have a retarding effect on the crystal growth42. The complexity of this 
substitution is, in fact, so high that it extends beyond the area of biomineralization and touches 
the most fundamental problems of crystallography and crystal growth phenomena43. When 
apatite is synthesized by precipitation, at atmospheric conditions, B-type of carbonated HAP 
normally forms where CO3

2- ions substitute for PO4
3-. Typically, when HAP is prepared by 

means of an annealing treatment, A-type forms where CO3
2- ions substitute for OH-, owing to the 



high mobility of OH- groups44. However, this is not necessarily the case since A-type 
substitution was also observed in HAP prepared by precipitation at room temperature45. 
Biological apatite also normally presents a mixture of A and B types46,47. In both cases, the fact 
that the divalent carbonate substitutes trivalent phosphates or monovalent hydroxyls implies the 
necessity to compensate for the imbalanced charges by modifying the stoichiometry of the 
compound or favoring incorporation of other impurities into the crystal lattice. On the basis of 
charge neutrality, the chemical formula of carbonated HAP is Ca10-x/2[(PO4)6-x(CO3)x][(OH)2-

2y(CO3)y], where x and y are numbers of CO3
2- ions substituting for PO4

3- and OH-, 
respectively48. 

The most frequently encountered structure of HAP belongs to a hexagonal system with 
P63/m space group. The less common symmetry of HAP lattice is described by P21/b space 
group within the monoclinic crystal system49. The unit cell dimensions of pure hexagonal HAP 
are: a = b = 0.937 nm, c = 0.6881 nm. However, each one of the substitutions has an effect on the 
lattice parameters, so that biological HAP deviates from the perfect crystal arrangement of ions 
depending on the additives and the positions that they occupy in the lattice. For example, A-type 
substitution upon carbonation of HAP implies larger CO3

2- ions replacing smaller OH- ions and 
thus expanding the a axis and contracting the c axis, whereas B-type substitution has an opposite 
effect50,51. These changes in crystal lattice parameters often induce changes in crystallinity, 
thermal stability, morphology, solubility and other physicochemical and biological properties of 
the material52.  

HAP is a ceramic material, and most of the primary chemical bonds found in ceramic 
materials are a mixture of ionic and covalent types, which explains for complex interplay of 
latent properties that HAP and ceramic materials in general are prone to exhibit. As expected, 
CAP can adopt numerous crystal structures depending on stoichiometry and conditions of 
formation. Some of the main CAP phases are listed in Table 1, whereby the crystal structure of 
HAP is illustrated in Fig.2.  
 
Table 1. The main CAP phases obtainable upon precipitation from the solution. 

 
Phase 

 

 
Chemical formula 

 
Space group 

 
pKsp at 37 oC 

 
Ca/P molar 

ratio 
Monocalcium 

phosphate 
anhydrous (MCPA) 

 
Ca(H2PO4)2 

 
Triclinic Pī 

 
1.14 

 
0.5 

Monocalcium 
phosphate 

monohydrate 
(MCPM) 

 
Ca(H2PO4)2·H2O 

 
Triclinic Pī 

 
1.14 

 
0.5 

Dicalcium 
Phosphate (DCPA, 

Monetite) 

 
CaHPO4 

 
Triclinic Pī 

 
7.0 

 
1 

Dicalcium 
Phosphate 

Dihydrate (DCPD, 
Brushite) 

 
CaHPO4·2H2O 

 
Monoclinic Ia 

 
6.6 

 
1 

α-Tricalcium Ca3(PO4)2 Monoclinic 25.5 1.5 



Phosphate (α-TCP) P21/a 
β-Tricalcium 

Phosphate (β-TCP, 
Whitlockite) 

 
Ca3(PO4)2 

Rhombohedral 
R3cH 

 
29.5 

 
1.5 

Tetracalcium 
Phosphate (TTCP) 

Ca4(PO4)2O Monoclinic 
P21 

37.5 2 

Octacalcium 
Phosphate (OCP) 

Ca8H2(PO4)6·5H2O Triclinic Pī 97.4 1.33 

 
Hydroxyapatite 

(HAP) 

 
Ca10(PO4)6(OH)2 

Pseudo-
Hexagonal 

P63/m 

 
117.3 

 
1.67 

 

 
Fig.2. Crystal structure of HAP showing its c-axis perpendicular to 3 a-axes lying at 120 o angles to each other (left), 
with projection on the (001) plane of HAP structure (right).  
 

1.2. Typical synthetic pathways 
 
Numerous methods have been applied for the synthesis of fine particles of HAP, 

including reactions in solid state53,54,55,56, abrupt or continuous precipitation from 
solution57,58,59,60, hydrothermal processing61,62, electrospraying63, electrospinning64, flux cooling 
method65, spray pyrolysis66, ultrasound67 and mechanochemical processing68,69, microwave 
irradiation assisted precipitation70,71, microemulsion- and surfactant-assisted 
precipitation72,73,74,75,76, sol-gel syntheses based on hydrolysis of metal organic precursors77,78, 
and chemical vapor79 and plasma deposition80. However, from the point of view of control over 
apatite structure and morphology, these methods could be roughly divided to low and high 
temperature ones. The latter typically involve mechanochemical homogenization of precursor 
compounds, such as Ca3(PO4)2 and Ca(OH)2, and their subsequent annealing at ~ 1000 oC. The 
advantage of this method lies in the ability to precisely set the stoichiometry of the final product, 
whereas long reaction times and high annealing temperatures are some of the main downsides. In 
general, if the molar ratio of Ca/P is not set to 1.667 during preparation, extraneous phases 
normally appear: α- or β-TCP at lower values and typically CaO at higher values, which is 
especially the case upon annealing (with α-TCP forming at higher temperatures, such as around 
1200 oC, and β-TCP forming at lower temperatures, such as up to 900 oC). In addition to the high 



levels of energy consumption, another major downside of high-temperature, solid state methods 
lies in the difficulty to produce uniform nanosized particles by their means. The latter are, on the 
other hand, known to promote a favorable biological response, including higher osteoinductivity 
and osteoconductivity, leading to a quicker integration of the implanted HAP-based material81. 
Low-temperature methods that involve precipitation from solution have a disadvantage in the 
frequent presence or transient and metastable phases in the final product. As we shall see in what 
follows, it is exactly this multitude of possible phase combinations, sensitive to subtle changes in 
synthesis conditions82, that may be linked to the aforementioned Greek origins of the word 
“apatite”.  

HAP is a sparingly soluble salt in neutral and alkaline aqueous solutions, and forms 
crystals with high edge free energies. As surface/interfacial energy of a crystal is indicative of 
the difficulty of its forming, sparingly soluble salts as a rule have higher interfacial free energy 
values that soluble ones. Also, as the interfacial tension can be expressed as proportional to the 
size of the critical step/nucleus upon dissolution/crystallization, high values of the latter can be 
deduced and correlated with the experimentally observed slow dissolution/crystallization of 
HAP83. As a direct result, synthesized HAP typically exhibits not only a wide distribution of 
particle sizes (partly caused by the aggregation mechanism of growth, which will be discussed in 
the next subsection, and partly by slow crystallization, which makes it difficult to avoid the 
overlap between nucleation and diffusional crystal growth phases), but highly irregular particle 
shapes as well. In view of that, finding conditions for a controllable synthesis of HAP 
nanoparticles with tunable sizes and shapes presents a worthwhile research challenge. Various 
additives have been applied in precipitation syntheses for the sake of attaining this aim, including 
cetyltrimethyl ammonium bromide (CTAB)84, poly(acrylic acid) (PAA)85, poly(allylamine 
hydrochloride)86, and others.  

Biological apatite is, moreover, known for its high content of defects, caused in part by a 
relatively large percentage of impurities, all of which affect the lattice parameters, crystal 
morphology, crystallinity, solubility and the thermal stability of the material. HAP crystal 
surface is thus rarely smooth, and the reason is related to its biological significance. The 
exceptional roughness of biological HAP, comprising surface irregularities in the order of size of 
single unit cells, hypothetically corresponds to the tendencies to increase protein binding in the 
process of biomineralization87. Previous studies have shown that rough surface improves 
biocompatibility of the material and has a positive effect on inflammatory reactions, whereas the 
viability of monocytes seeded on flat surfaces tends to be far lesser88. Also, cells are constantly 
creating and decomposing HAP in bone, and rougher surfaces provide conditions for an easier 
anchoring of cells thereto. An ab initio model has showed that amino acid side chains carrying 
either acidic (i.e., aspartic and glutamic acids) or basic (i.e., lysine or arginine) residues are prone 
to interact with HAP crystal surfaces, which is in agreement with numerous spectroscopic and 
other modeling data that report both carboxylic and amino residues typically found in close 
proximity to the HAP surface89. In fact, the reason why phage display panning techniques on 
HAP surfaces have not yielded significant results so far lies exactly in the tendency of numerous 
peptide combinations to bind to it, which diminishes the high selectivity on which this approach 
inherently depends90.  

The typical models of protein-mineral interaction refer to specific binding of additives to 
crystal faces, which are then prevented from growing. Such is the case for the current model of 
amelogenesis wherein nanospherical particles of amelogenin are assumed to bind onto (hk0) 
faces of the growing HAP crystals and thus foster their uniaxial growth along [001] axis91. 



However, one of the opposing actual explanatory trends lies in invoking the surface-controlled 
channeling or the diffusion-controlled transportation activity of additives for the sake of building 
apatite crystals using either amorphous units or individual ions and complexes as building 
blocks. Such an idea is supported by the successful synthesis of a few ceramic materials, 
previously obtainable only through high-temperature annealing treatments, by precipitation at 
room temperature in the presence of short peptides derived from phage display libraries92,93.  

Precipitation of HAP is, in fact, often quite morphologically sensitive (Fig.3) to the 
presence of additives94,95,96,97,98,99. Electrostatic forces that govern the interaction between 
growing inorganic particles and given additives and tunable by controlling the ζ-potential of 
colloidal particles are thus regularly shown as crucial for setting the optimal conditions for the 
growth of nanocrystals in desirable sizes and morphologies. For example, elongated HAP 
particles were obtained in the presence of poly(L-lysine), whereas in the presence of more 
charged poly(L-glutamic acid), small nanocrystals resulted under otherwise same conditions of 
precipitation100. This was explained by assuming that the more charged the heterogeneous 
nucleation surface, the more cations will be attracted thereto and the more nuclei will be formed. 
Consequently, the particles will be smaller and there would be no biaxial growth, unlike in the 
case of the less charged macromolecular surface. On the other hand, hydration effects could not 
be reduced to a simplistic rule of a thumb, and in reality it is difficult to predict the effects of 
addition of salt and pH change as they are always synergistically bound with the effects of other 
species present in the actual reaction system. A recent computer model101 has thus shown ions 
with low charge density adsorbed preferentially on the surface of a hydrophobic particle, leading 
to micelle-like clusters of particles, whereas ions with high charge density tended to be depleted 
from the particle surface, leading to formation of similar clusters of dispersed hydrophobic 
particles. Only in the intermediate case, conditions for the dispersion of individual particles and 
avoidance of the formation of clusters were found. Generally speaking, the effect of additives on 
composition, structure and properties of HAP particles is so intensive that we can over and over 
again recall the words of Stephen Mann of Bristol University: “Such is the lure of the organic 
matrix that you can attend some scientific conferences, notably those on bone mineralization, 
and hardly ever come across a serious mention of calcium phosphate”102.   



 
Fig.3. Owing to its structural flexibility, HAP can be prepared in a variety of morphologies, ranging from spheres to 
filaments to rods. However, HAP particles are on most occasions found in the forms of plate- or needle-shaped 
particles (bottom left), whereas their spherical nanosized morphologies are in most cases the sign of their amorphous 
nature (bottom right). Reprinted and adapted with permission from Refs. 103 and 104.  

 
Methods for preparation of fine CAP particles usually follow a soft chemical route105,106, 

which involves precipitation from solutions or suspensions of precursor salts, ideally with no 
subsequent high-temperature annealing treatment. Entrapment of additional composite 
components is carried out by precipitation of CAP in the presence of dissolved cargo molecules. 
Surface functionalization, on the other hand, normally requires a time-delayed introduction of the 
surface-anchoring molecules owing to a sufficient aging that the initial precipitate has to undergo 
in solution prior to the formation of HAP phase. Conjugation of proteins, peptides, polymers, 
cell-penetrating moieties, reporter groups and other functional ligands to the carrier surface is in 
the case of CAP particles expected to proceed non-covalently, that is, via adsorption governed by 
hydrophobic or van der Waals forces.  

Amphiphilic mixtures in form of reverse micelles, other microemulsion phases or simple 
steric dispersants could be implemented with the purpose of preventing agglomeration of 
particles and stabilizing their suspensions107,108,109. Spray drying enables drying of the 
precipitated powders either without inducing an undesired agglomeration of the particles or with 
forming attractive and uniform agglomerates of smaller particles110. Bis(2-
ethylhexyl)sulfosuccinate (AOT) has thus recently been used for the purpose of assembling HAP 



particles into enamel-like bundles111. Successive modification of surface charges of the particles 
and of an adsorbent during the cycles of washing and rinsing can also be carried out to avoid 
agglomeration and yield pure and stable dispersions of CAP nanoparticles. Agitation by means 
of ultrasound is often used for the same purpose, although it can markedly affect not only the 
particle size distribution, but their morphologies too. Hence, in a particular study, ultrasound 
applied during the ripening of a precipitate comprising hollow CAP nanospheres led to their 
transformation into fibrous particles112. As for the particle composition, 80 % HAP and 20 % 
TCP is usually pointed out as an ideal phase composition ratio from the point of view of the 
optimal bioresorbility of the compound113. However, by varying HAP/TCP ratio in the final 
compound, the optimal degradation rate thereof, defined by the intended application in the body, 
can be set. Porosity, usually controlled using a porogenous agent, such as poly(methyl 
methacrylate) (PMMA)114, presents another structural property of the particles that can be used 
to control the release rate of encapsulated compounds115. The particle size presents another 
important parameter that defines the bioresorption rate of HAP materials. As expected, smaller, 
nanosized particles are associated with significantly higher resorption rates compared to the 
bigger, microsized ones116. In addition to composition and size, the particle shape is also known 
to influence the uptake efficiency of the encapsulated drug117. The morphology of CAP particles 
may be thus used as a parameter in optimizing a favorable bioresorbability thereof. It is usually 
claimed that the particles produced in forms of powders or suspensions should ideally be non-
agglomerated, spherical and uniform in size and morphology, which is to ensure the reliability 
and reproducibility of their application in the body. With respect to that, the surface of HAP 
particles could be modified with various additives, such as: hexanoic and decanoic acids that 
hydrogen-bond to the surface P–OH groups; alkanoic acids with longer alkyl chains so as to 
render the surface hydrophobic; oleic acid typically applied for the stabilization of magnetic 
fluids; sodium dodecyl sulphate or other surfactants; or through covalent bonding, the example 
of which may be esterification of surface P-OH groups with dodecyl alcohol, alkyl phosphates, 
pyrophosphoric acid, hexamethyldisilazane or various silanes which could be used as precursors 
for silica coating118,119. Surface modifications affect the surface charge, hydrophilicity, colloidal 
stability of the particles and their interaction propensities, thereby affecting their biological 
response as well. 

For the purpose of obtaining small, nanosized particles, abrupt precipitation procedures, 
yielding a high density of crystallization nuclei, are to be performed. Avoiding the overlap of 
nucleation and crystal growth phases is normally considered as the key to achieving 
monodispersity of synthesized particles. Low nucleation rates and fast crystal growth rates are, in 
contrast, the fundamental recipe for producing elongated HAP crystals. For example, when a 
slow and controlled decomposition of urea was used to promote changes in pH and provide 
conditions for precipitation, the HAP crystals formed were of plate-shaped and needle-shaped 
character120. Highly strained single-crystal apatite fibers with 20 – 60 μm in length and 100 – 
300 nm in diameter were also obtained in a precipitation reaction using urea as the alkaline 
agent121. pH and precipitation temperature as well as the molar ratio of precursor ions are often 
control parameters used to optimize and fine-tune the structural, morphological and thereupon 
the biodegradation properties of the carrier particles. As it is known that the formation of HAP 
follows a multi-step route permeated with complex solid-solid transformation pathways, dictated 
by the empirical Ostwald-Lussac’s rule of kinetics of phase transformations122, aging time is 
another experimental parameter applied to optimize the synthesis conditions (namely, 
insufficient aging can lead to amorphous components remaining in the system, whereas an overly 



extensive aging can lead to Ostwald ripening and broadening of the particle size distribution that 
ripening naturally entails). What follows is exactly a discussion of the critical aspects of this 
complex chemical mechanism.  

 
1.3. Mechanism of formation of HAP by precipitation 
 
Even if explored all alone, without any involvement of additives, precipitation of HAP, 

especially at low supersaturations, still presents an enigma. Not only is this process sensitive to 
the mildest influences within the experimental conditions, such as the amount and nature of 
impurities or the texture and chemical identity of the reaction vessel (which sometimes 
drastically affects the level of critical supersaturation), but the chemical pathways leading to the 
formation of HAP as the final phase are also subject to change depending on mildest 
modifications of the initial experimental conditions. Due to this reason, researchers in the 
biomineralization field are still in dispute over the exact chemical mechanism of formation of 
HAP in biological and in vitro conditions alike. Ostwald-Lussac’s rule predicts the highest 
nucleation rate for the least stable phase for which the supersaturation limit is exceeded under 
given conditions, implying that amorphous CAP will under most circumstances be the first phase 
to precipitate, followed by the solid state transformation to OCP first and only then to HAP. 
Ca(OH)2 or TCP may be secondary phases depending on the exact stiochiometric ratio between 
the precursor Ca2+ and HxPO4

x-3 ions in the solution. However, the exact chemical pathways, the 
transformation mechanism (dissolution/recrystallization or bulk rearrangement of ions within the 
prime crystal lattice), the transient compounds and time frames for the nucleation and growth of 
each one of the phases are still subject to uncertainty. 

In any case, the nature of formation of HAP as predicted by Ostwald-Lussac’s rule 
presents an argument against the sole diffusional growth of these crystals. Although the latter has 
for a long time been the major paradigm in explaining the formation of biological crystals, what 
we are witnessing today is a paradigm shift wherein the growth of crystals via amorphous 
precursors is slowly becoming the major explanatory model in the field123,124,125. A large amount 
of evidence has been collected recently in favor of this new paradigm which proposes the role of 
macromolecules in linking and organizing precursor amorphous or crystalline units within the 
growing crystals126. As of today, many variations on this theme flood the literature. According to 
one of the models, amorphous CAP acts as a “mortar” in cementing the “bricks” that are 
nanosized HAP units transported by biological molecules, and is also able to subsequently 
crystallize, contributing to the integrity of the final structure127. Another model proposes these 
building blocks to be bubbles of a phase that stands at the boundary between liquid and 
amorphous solid. These small liquid/amorphous-like entities are supposed to form even without 
a polymeric process-directing agent, although in such case they are short-lived and difficult to 
detect. In addition, a strict application of Ostwald-Lussac’s rule implies the formation of a 
structured liquid phase prior to the formation of an amorphous solid (usually considered as the 
first one to form, subsequently transforming to more stable solid phases). D’Arcy Thompson in 
his book On Growth and Form had thus argued: “In accordance with a rule first recognized by 
Ostwald, when a substance begins to separate from a solution, so making its first appearance as a 
new phase, it always makes its appearance first as a liquid”128. Most of the polymer phase is 
returned back to the solution, although on rare occasions it may get trapped between the 
crystalline layers, serving as an evidence of said nature of formation129,130. Invoking this 
mechanism, even monocrystalline systems, such as the basic crystalline units of enamel, micro-



sized apatite fibers, are accepted to be, may form through aggregation of subunits. The recent 
TEM studies have confirmed the existence of transient amorphous CAP phases in the developing 
enamel131. It has also been documented that long and defect-free filaments with the aspect ratios 
of up to 104 can be obtained by the aggregation mechanism132, overthrowing the idea that so 
grown apatite fibers would be prone to fracture due to many defects. In fact, in the context of a 
highly anisotropic organization of apatite crystals within enamel, such a slightly imperfect 
crystalline nature could be even proven as favorable. 

As a consequence of Ostwald-Lussac’s rule (Fig.4) and the relatively large number of 
phase compositions, the stages of which the precipitate has to pass through prior to reaching 
HAP crystal symmetry, the formation of the latter compound by precipitation can be expected to 
proceed at a relatively slow pace. The complexity and the crucial impact of the slow formation 
rate are best illustrated by the fact that the whole process of formation of elongated HAP crystals 
in dental enamel, having aspect ratios of up to 104, takes more time to complete than is needed 
for the entire embryo to be created in utero133. In view of such a slow rate of crystallization, 
there is a question whether this process could ever occur as a slow stream of crystallization, and 
not as a back-and-forth stream of crystallization/dissolution/crystallization, in which “mistakes” 
are made, but recognized and subsequently corrected, as is otherwise typical for biological 
syntheses134,135. Namely, it is not the perfect reproduction, but a high selectivity for the product 
properties that typifies biosynthetic phenomena. A similar stochastic nature can be, in fact, seen 
as ingrained in practically every aspect of creativity exhibited in the biological world, from 
human thinking and reproduction to the evolution of life136. This may also shed light on why the 
simultaneous activity of two types of cells – osteoblasts that build the bone material and 
osteoclasts that degrade the mineralized tissue – is required to maintain the functional structure 
of bone. 

 
Fig.4. An inability of the system to traverse multiple energy barriers posed on its way to the final, most energetically 
favorable state implies its transition through a number of transient stages. As the Ostwald-Lussac rule suggests, the 
less stable polymorph will pose the lowest energy barrier in front of itself, so that the precipitated ions will adopt it 
as one of the temporary states on their way to settle into a more stable phase. The image on the left is reprinted with 
permission from Ref.137. The diagram on the right demonstrates that even though supersaturation may be higher for 
a crystalline phase (S(c)) than for the amorphous (S(a)), the nucleation rate of the amorphous phase is higher at any 
given value of the product of ionic activities (Q), which is a consequence of a lower S being offset by a reduced 
interfacial energy.  

 



As far as the major parameters that could be controlled so as to optimize the formation of 
HAP along a desired route are concerned, the following can be numbered: pH, ionic strength, 
temperature, concentration and identity of additives, Ca/P molar ratios and supersaturation138. pH 
primarily affects precipitation of HAP with its effect on the amount of free hydroxyl groups and 
on the balance of phosphate species. A shift to lower pH will lower the saturation level by 
decreasing the concentration of free OH- groups and shifting the balance of phosphate species 
from PO4

3- to HPO4
2- to H2PO4

- to H3PO4. Hence, the lower the pH, the more of the phosphate 
groups will be protonated and the precipitation will be less favored. Also, pH can shift the 
surface charge of the interacting particles by changing the distribution of proton and hydroxyl 
groups hydrating the interface. Although H3O+ and OH- are usually considered as charge-
determining ions in case of HAP particles, ions other than these can adjust the surface charge, 
and in calcium-containing solutions, Ca2+ ions may bind to the negatively charged HAP surface 
at pH > IEP (isoelectric point), leaving the surface neutral rather than negative. The opposite 
effect can take place in phosphate-rich solutions when binding of HxPO4

x-3 species at pH < IEP 
may result in a negatively charged HAP particle surface rather than the positive. These insights 
were, however, gained not by means of electrophoretic analyses but through the Brönsted 
isotherm139, and are not necessarily in agreement with the electrophoretic studies140. In view of 
the propensity of HAP to undergo dissolution/recrystallization processes, it is questionable how 
stable the structure and composition of the interface layer of HAP particles is as they undergo a 
pH change. It is known that the drastic effect of F- in the suspension medium on the ζ-potential 
can be explained only by assuming its incorporation in the crystal lattice of the apatite141. Hence, 
an intensive exchange of ions between the solution and HAP particles is expected to take place, 
frequently shifting the ζ-potential in hardly predictable ways. This may explain why the surface 
composition of suspended or precipitated HAP particles is different compared to their bulk 
composition.  

A hydrated layer containing relatively mobile ionic species is assumed to be present on 
the surface of precipitated CAP particles in the solution. The composition of this layer would be 
subject to change depending on pH and ionic content of the medium. Experiments carried out in 
our lab have, furthermore, shown that the ripening time of CAP precipitate has a marked effect 
on the surface charge of the particles. As can be seen from Fig.5a, ζ-potential of the particles in 
the pH range of 5 – 8 shifts from positive to negative values with increasing the aging time in 
solution from 10 min to 7 days. The high surface ion mobility is also thought to be responsible 
for the relatively high electrical conductivity exhibited by HAP. In addition to the high surface 
area of the mineral particles in bone, the ion-exchange propensity of HAP may be another factor 
crucial in providing the cellular environment with an access to the constituent ions for the sake of 
facile bone remodeling or consumption of ions for other purposes (as bone also acts as a 
frequently accessed mineral reservoir). One of the consequences of the maturation of bone may 
thus be correlated with the loss of these ion-exchange properties142. On the other hand, despite 
the high mobility of surface ions, HAP is typified by its sparsely soluble nature and slow crystal 
growth even at very high supersaturations143,144. This implies facile reorganization and 
restructuring of ionic layers (that is, the solid surface layer of the particle and the double-layer of 
ions surrounding it) that contribute to surface charges following changes in the ionic 
environment. Indeed, ζ-potential of HAP particles has been observed to change with the 
immersion time for certain compositions, suggesting an intensive exchange of ions across the 
interface layer and its restructuring following changes in the solvent medium145,146. It is natural 
to expect that the structure of the mobile surface layer would depend on the physical and 



chemical conditions under which the particles were prepared, and this effect can be invoked to 
explain a large discrepancy between the IEPs and surface potential values for HAP particles 
reported in the literature. Consequently, it has been evidenced that methods for preparation and 
any changes in stoichiometry (Ca/P ratio) significantly affect IEP of HAP147. Pure HAP powders 
precipitated in acidic conditions were, for example, shown to possess 1 – 3 pH units lower IEPs 
compared to those precipitated from alkaline solutions148.  

HAP particles in sols are also excessively prone to selective leaching of ions, which 
leaves different ζ-potential vs. pH curves of the same powder in different solvent media as a 
consequence149. Such mild solubility effects are known to be responsible for the scatter in IEPs 
and points of zero charge (PZC) values reported in the literature. Thus, whereas some studies 
report negatively charged particles in the entire pH range in which HAP is the stable phase150, 
others report IEP values at anywhere between 5 and 7.5, below which the particles should 
become positively charged151,152. There are, however, reports153 on IEP of HAP suspensions 
detected at pHs as high as 10. In addition, HAP has two types of crystal planes which carry 
different net charges: positive on a planes and negative on c planes, and there as speculations 
that the a planes tend to adsorb acidic proteins, whereas the c planes tend to attract the basic 
ones154. Elongation of HAP particles along the c-axis would thus lead to a shift towards more 
positively charged particles with a higher specificity of adsorption onto negatively charged acidic 
proteins155. Since biological entities are predominantly dispersed on the negative side, it comes 
as no surprise that positively charged HAP promotes good adhesion of cells thereto, whereas 
poor cellular adhesion and growth was observed on negatively charged HAP surfaces156. 
Extracted biological HAP crystals were thus also shown to comprise a series of discrete and 
alternating domains of variously charged (in both magnitude and sign) surfaces (Fig.6a), 
independently of topography, indicating their intrinsic potential for periodic binding of matrix 
proteins under physiological conditions157.  

  
Fig.5. a) ζ-potential vs. pH curves for as-prepared, 2-day-aged and 7-day aged CAP prepared by precipitation from a 
solution comprising 25 mM CaCl2 and 15 mM KH2PO4 at pH 10.5. b) ζ-potential of suspended HAP nanoparticles 
vs. [Ca2+] (-o-) and [H2PO4

-/HPO4
2-] (-●-) at pH 7.40 ± 0.02. The graph shows that both of these ionic species adsorb 

on the HAP particle surface. The plateau observed in both cases signifies the adsorption of ions reaching a saturated 
level.  
 

In addition to ions in the double layer surrounding the particle, HAP particles in 
suspension undergo practically all the mechanisms that contribute to the charged surface (that is, 



adsorption, ionization and selective dissolution), which additionally increases the complexity of 
this physical effect. In case of hydrous metal oxide sols, in general, the surface hydroxyl groups 
(M–OH) become deprotonated at high pH values, transforming from –OH to –O- and thus 
contributing to the negative charge of the particle surface, whereas they become protonated, 
transforming from –OH to –OH2

+ at low pH values. As Ca2+ ions on the CAP particle surface are 
bound to OH- groups owing to hydration effects, protonation/deprotonation thereof can influence 
the particle charge. HAP particles also cannot be considered as immune to selective dissolution, 
which is known to contribute to imbalanced neutrality of ionic crystalline particles as wholes in 
many ionic crystals. For example, in the case of AgI particles, pKsp = 16; however, the zero point 
charge does not exist at pAg 8, but is displaced to pAg 5.5 (i.e., pI 10.5) because smaller and 
more mobile Ag+ ions are held within the AgI crystal lattice less strongly than heavier and less 
mobile I- ions158. A similar discrepancy in the mobility between Ca2+ and HxPO4

x-3 ions can be 
inferred for the case of HAP crystal symmetry. Namely, Ca2+ ions are more flexibly arranged 
within the lattice, which is therefore more prone to display Ca2+ vacancies, whereas PO4

3- groups 
are practically those that define the hexagonal structure of the crystal. The atomic arrangement of 
all calcium orthophosphates is built up around the network of PO4

3- groups that provide stability 
to the structure159. This may also explain why the crystallization of a few CAP phases has been 
shown160 to be much more sensitive to the activity of phosphate species than to that of Ca2+ 
(Fig.6b), even though both ions adsorb well to the surface of HAP particles (Fig.5b). This is 
presumably due to weaker hydration attraction of solvated HxPO4

x-3 groups to the surrounding 
protons than of solvated Ca2+ ions to the adjacent OH- groups. As a result, a higher activation 
barrier is attributed to Ca2+ in the solution than to HxPO4

x-3, which is also in agreement with the 
generally observed more pronounced solubility effect for anions of the Hofmeister series than for 
cations161, corroborating their more significant effect on the morphology of precipitated 
nanoparticles as well162.  

 
Fig.6. Both microsized kaolin crystals and nanosized gold particles on the left image are negatively charged as a 
whole. However, because edges of kaolin crystals are positively charged, gold nanoparticles effectively adsorb onto 
them. HAP crystals show a similar modulation of charges over their surface, which enables them to interact with an 
array of species relying on electrostatic attraction. Reprinted and adapted with permission from Ref.112. The image 
on the right shows increasing HAP crystal growth rates when the activity/abundance of HxPO4

x-3 ions in the solution 
dominates over the activity/abundance of Ca2+ ions. Reprinted with permission from Ref.163. 
 



Ionic strength plays a role in screening ion-ion interactions (as well as the ones between 
charged colloidal particles) in the solution. Namely, surface charge density is equal to σ = εκψo, 
where ε is the dielectric constant of the medium (inversely proportional to the ionic strength), 1/κ 
is the length of the diffuse double layer (composed of Stern layer of adsorbed counter-ions and a 
diffuse layer composed of both counter-ions and co-ions, yielding as a sum the Debye length at 
which the electrical neutrality is again established), and ψo is the surface potential. The addition 
of an inert electrolyte compresses the diffuse layer of charged ions and co-ions around each of 
the dispersed and charged particles. Namely, a higher concentration of co-ions and counter-ions 
implies screening of the particle surface charge at a closer distance to the particle. In other 
words, 1/κ decreases, which entails either an increase in σ or a decrease in ψo, or both. For 
example, in case of AgI particles whose potential depends on the concentration of Ag+ and I- in 
the solution, addition of electrolyte and the corresponding drop in κ leads to adsorption of 
potential-determining Ag or I ions, which increases σ but keeps ψo constant. However, for an 
ionogenic surface, σ stays constant, but ψo drops. Simply saying, increasing ionic strength causes 
the layer of counter-ions around the charged particle to shrink and thus increases the propensity 
of the dispersed particles to agglomerate, which is known as “salting out” effect, and is known to 
be involved in the pathological calcifications in the body164. 

Now, it is well known that Nature disperses colloids almost exclusively on the negative 
side. Most cells and biological surfaces are thus negatively charged. The same can be said for 
HAP particles in physiological conditions. The effect of the ionic strength on (de)stabilization of 
biological colloids, including HAP, should thus be in theory primarily sensitive to the valence of 
the cation. Critical coagulation concentration (ccc) of the cation may be calculated using the 
following empirical formula: ccc = 0.8/v6, where v is the valence of the cation. One can then see 
that for monovalent Na+ ccc = 0.8 M, for divalent Ca2+ ccc = 12.5 mM, and for trivalent Al3+ ccc 
= 1 mM. However, although CAP more efficiently nucleates on negatively charged surfaces, it 
can nucleate on positively charged ones as well for as long as the proper chemical identity is 
selected165. On the other hand, the sign and intensity of the charge of the nucleation surface are 
known to play a determining role in defining the crystal symmetry of the resulting precipitate.  

Ca/P molar ratios affect the formation of HAP firstly as the result of unequal activation 
barriers for cations and anions (Fig.6b). Although most crystal growth models neglect this effect 
by treating all the inclusive ions identically, whenever the crystal growth rate depends on the 
rate-limiting ion, this effect has to be taken into account in addition to other thermodynamic and 
kinetic factors166. For example, due to extensive re-adsorption of HxPO4

x-3 ions onto the particle 
surface, Ca/P molar ratios in the equilibrium solution were often measured to be as high as 25 
despite the composition of the precipitate corresponding to almost stoichiometric HAP167. The 
ratio between Ca2+ and HxPO4

x-3 ions in the solution is also important because it may trigger 
precipitation of a specific phase combination and induce a particular phase transformation 
pathway in the solid state. Different Ca/P ratios can thus initiate different kinetic pathways for 
the reaction, which brings us to the discussion of the mechanism of precipitation of HAP. 

The main parameter used to describe the latter is supersaturation ratio, S, defined as 
 

S = Q/Ksp  
 
Q is the product of ionic activities of precursor ions in the solution for the given 

stoichiometry, and for half a unit cell of HAP equals  
 



Q = {Ca2+}5{PO4
3-}3{OH-}  

 
Ksp is the product of ionic activities for the given compound at the saturation level. In 

view of the continuous transfer of matter across the solid/liquid interface in both directions, Ksp 
could be also defined as the product of activities of dissolved ions of a solid substance in 
equilibrium between the dissolved ions precipitating and the precipitated ions dissolving. 
Ostwald-Lussac’s rule dictates that the most soluble phase (that is, the least stable) for which S > 
1 will be the first to precipitate, which will be successively followed by precipitation of less 
soluble phases. The reason for this is that the thermodynamic barrier posed between the state 
occupied by dissolved ionic species and the solid phase will be the lowest for the 
thermodynamically most unstable phase. An important contributor to this effect is the 
surface/interfacial energy, i.e., the work required to increase the surface area of a substance by 
one area unit, which is the hurdle that must be overcome when forming a solid phase. 
Amorphous phase is less ordered and will have a lower interfacial energy (and that particularly if 
it is hydrated – as such, it is actually most similar in chemistry to the surrounding aqueous 
environment) than any crystalline phase, which means that it tends to be the first to precipitate 
prior to subsequently transforming into a more stable, crystalline modification. In case of the 
precipitation of calcium phosphates, this means that HAP would be the last phase to form. The 
initial precipitation of the amorphous CAP is normally followed by nucleation of OCP at a 
certain stage. However, note that only phases with S > 1 are involved in this successive 
precipitation. Those for which S < 1 are assumed not to be precipitated at any stage of this 
process, and their appearance may only be transitory during phase transitions that involve 
rearrangements of ions in the solid state. This kinetic rule was empirically observed, although it 
can be nowadays supported by theoretical arguments. In one such calculation168, it was shown 
that in simulated body fluid (SBF), whose S normalized per growth unit (n = 9 for HAP) equals 
19.5 with respect to HAP, the nucleation rate of OCP is higher than the one for HAP, implying 
that OCP would be the preceding crystalline phase to form. DCP, however, cannot form under 
these conditions because the solution itself is undersaturated with respect to it. Only if [Ca2+] and 
[HxPO4

x-3] in the fluid increase so that the solution becomes supersaturated with respect to DCP, 
the nucleation rate for this phase would become higher compared to the one for OCP and HAP. 
Also, as pH of SBF increases, the difference between the nucleation rates for the formation of 
HAP and OCP decreases, and at ~ pH 10 they become equal. In fact, as phases such as DCPD or 
OCP are thermodynamically less stable than HAP, they would never form in reality if it were not 
for their ability to grow at a comparatively high rate. HAP is a relatively hard crystal, ranking 5 
on the Mohs scale, but despite that, as previously noted, it has an unusually low interfacial 
energy, which explains for the facility with which it nucleates in form of small particles in both 
biological and in vitro conditions. Had HAP had a high interfacial energy, a long persistence of 
these tiny crystals in both the biological and geological environments would not have been made 
possible. However, these other, thermodynamically less stable CAP phases have even lower 
surface energies, which is the reason why they nucleate even faster than HAP and thus often 
present intermediates leading to the eventual formation of HAP.  

OCP crystals almost always come in plate-shaped (100) morphologies. Namely, (100) 
OCP faces are more hydrated than others and thus do not provide that favorable conditions for 
the attachment of PO4

3- and Ca2+ ions as other phases. Consequently, the crystals grow slower 
along [100] axis, which results in (100) faces being the dominant in the final crystal 
morphologies. Also, (100) faces have the lowest interfacial energy, so that the crystal growth 



proceeds in such a way to maximize their exposition on the crystal surface. This rule, which is in 
accordance with the Wulff construction169, does not necessarily apply for biomineralized HAP 
for which, due to the growth regulated by organic adsorbents and matrices, the crystals often 
predominantly expose less thermodynamically stable faces. For example, the outer surface of the 
tooth enamel is composed of the smallest habit face, (001), which is more resistant to dissolution 
under acidic conditions than (100)170. Still, since (100) faces are the principal ones on both OCP 
and HAP crystals, and since there are 2 of them on an OCP crystal and 6 of them on a HAP 
crystal, OCP should indeed have a plate-shaped or leafy morphology, whereas HAP should most 
optimally possess a hexagonal acicular morphology. However, when OCP acts as a precursor (an 
intermediate phase) for the formation of HAP, the final HAP particles retain the plate-shaped or 
acicular and fibrous morphologies in which (100) faces are dominant. Sometimes thus they retain 
forms of rosettes and fascicles with protruding blades or fibers. Intermediate phases are thus 
expected to play a crucial role in defining the morphology, interfacial properties and the growth 
mechanism of the HAP phase. 

The first phase that should form upon precipitation of CAP is thus an amorphous phase 
with the stoichiometric formula of Ca9(HPO4)x(PO4)6-x(OH)x (x < 0.5). In contrast, notice that the 
stoichiometric formula of HAP is usually written as Ca10-x(HPO4)x(PO4)6-x(OH)2-x (0 < x < 1). 
The particles initially formed would actually be agglomerates of amorphous CAP units. Only in 
the following stage, the transformation of this phase into HAP and any other phase with S > 1 
under the given conditions would take place. Under most of the conditions that resemble the 
physiological ones (pH ≈ 7.4 and T = 37 oC), the identity of the precipitate changes over aging 
time (although OCP is accepted to be the transient phase in physiological conditions and at pH < 
9, the mechanism is not clearly defined at higher pHs), eventually resulting in a stable and most 
often biphase product (HAP/TCP). Solubility isotherms for DCPD and OCP at room temperature 
and for Ca/P molar ratio of 1.16 (resembling the Ca/P ratio within the initially precipitated 
amorphous phase) intersect at pH 6.7 (above this value, OCP is a more stable phase, and the 
trend is reversed at lower pHs), which implies that according to Ostwald-Lussac’s rule171, the 
transformation of the amorphous phase to HAP should follow OCP→DCPD→HAP route at pH 
< 6.7 and DCPD→OCP→HAP route at pH > 6.7. Interestingly, magnetic field has been shown 
to accelerate the phase transformations along steps defined by the Ostwald-Lussac rule upon 
precipitation of CAP, also modifying ζ-potential of the particles172. The same effect was 
observed in the case of calcite173,174 and many other inorganic and organic diamagnetics, 
including proteins175, where owing to the diamagnetic anisotropy of the crystalline order or the 
peptide bond an external magnetic field has an effect on precipitation and assembly thereof. 

If the trend of pH change during this process is followed, it would be observed that the 
stage of formation of the amorphous phase is followed by a mild decrease in pH caused by the 
higher alkalinity of Ca2+ compared to the acidity of HxPO4

x-3. The subsequent formation of HAP 
is, however, entailed by a more significant drop in pH due to OH- ions getting incorporated in the 
crystal lattice. The time span between mixing the reactants and the point when a more drastic pH 
drop is detected is considered as the induction time (a.k.a. nucleation lag time), τ, which is 
inversely proportional to S. Hence, the induction time is taken not as the time between the point 
of mixing the components and the formation of the first amorphous CAP particles, but as the 
time that passes before HAP starts forming, which is marked by the onset of the more significant 
pH drop (Fig.7). The third stage is typified by a pH drop rate with a similar slope as in the first 
phase, which is the sign of stabilization of the phase transformation. The slope eventually 
approaches zero, meaning that the stable phase has formed. All in all, the overall pH drop trend 



is the one of sigmoidal shape. As expected, the induction period decreases with increasing the 
initial reagent concentrations, temperature and pH. However, pH change cannot be used to 
precisely estimate the rate of nucleation and crystal growth, primarily because of the inevitable 
presence of the buffering phosphate species. Even without their buffering activity, it is known 
that the nucleation rate increases with time (as 1 – cosx function), from t/τ ≈ 0.5 to t/τ ≈ 6 when 
the constant nucleation rate is reached. This explains why the part of the pH vs. t curve where the 
onset of the pH drop is observed typically follows the trend of increasing its slope with time, all 
until the mother phase gets depleted of the growing units and the curve approaches the third 
stage of the process, that is, the one of mere rearrangement of the crystalline phase.  

 
Fig.7. Three stages in the trend of pH drop following precipitation of CAP and formation of HAP (left), the 
presumed random packing of amorphous clusters into nanosized amorphous CAP (middle), and their rearrangement 
into symmetry that corresponds to HAP (right). Reprinted with permission from Refs.176,177. 

 
Hence, the process of formation of HAP in a precipitation reaction from a pure solution 

can be divided to following stages178: i) homogeneous nucleation; ii) aggregation of primary 
amorphous CAP particles into typically spherical units; iii) aggregation of spheres into chain-like 
structures; iv) growth of these structures; v) secondary precipitation and phase transformation. 
The initially precipitated particles of the amorphous phase were observed to be round-shaped 
with 20-30 nm in size (although they can reach 120 nm in size)179, but composed of smaller 
particles of 4 nm in size on average. It was also observed that an increase in the ripening time 
implied aggregation of spherical singlets and formation of needle-shaped CAP particles of about 
20 nm in length180. This aggregation model for precipitation of HAP (Fig.8) is in agreement with 
numerous literature reports. Matijević has pointed out that most microsized uniform colloidal 
particles form not through following the classical LaMer’s model that refers to successive stages 
of nucleation and crystal growth, but by involving an aggregation of primarily precipitated units 
at a certain stage of the process181,182,183. Microstructural investigations of fine particles obtained 
by precipitation thus in most cases reveal structures composed of aggregated subunits184, and this 
mechanism of growth has been evidenced for numerous inorganic and organic systems 
alike185,186,187. A recent high-resolution in situ observation of formation of fine particles has 
shown an intensive coalescence of nanoparticles during their growth188. The structural nature of 
the primary units and their transformation pathways are, however, still the subject of 
disagreement among different research groups. The difficulty in assessing the structure of 
primarily precipitated units stems from the fact that owing to its transient nature, the amorphous 
CAP normally remains undetected unless it becomes stabilized by additives, such as rare-earth 
metal ions or peptides, for example.  



 

 
Fig.8. Uniform spherical HAP particles obtained using ultrasonic spray-pyrolytic processing (upper left), forming 
through aggregation of smaller spherical subunits (upper right). Reprinted with permission from Ref.189. Spray 
drying is another method that routinely leads to formation of microsized HAP particles through aggregation of 
nanosized subunits, and some of the morphologies are shown in images in the bottom row. Reprinted from Ref. 190. 
 

However, the exact pathway of phase transformations following precipitation and leading 
to HAP as a final product is subject to change depending on the experimental conditions, 
including ionic concentrations, molar ratios of precursor ions, pH, T, the presence of additives, 
etc. Thus, for example, under given conditions that involved [Ca] > 0.5 M and pH 10 – 11, it was 
shown that OCP is the first phase that forms, transforming subsequently to amorphous CAP 
(which was observed to be the fastest step), which then transforms to DCP, which eventually 
transforms to HAP191. The process was sensitive to temperature, as 24 h was required to attain 
HAP at 25 oC, whereas the same process was over in only 5 min when taken place at 60 oC. 
When precipitation was carried out at 95 oC and at pH 10.6, the formation of HAP was so quick 
that all other phases were virtually undetectable. This may have been due to a sufficiently high 
heat content of the system, which enables rapid transcending of the stages dominated by 
intermediate phases. In support of this observation, (a) DSC/TGA analysis led to detection of 
only the adsorbed water loss peak; (b) XRD showed unmodified phase identity and no change in 
the lattice parameters (which would result from the loss of OH- ions from the crystal lattice and 
the formation of vacancies during annealing) after heating up to 1100 oC; and (c) IR 
spectroscopy showed only bands at 3572 and 631 cm-1 coming from stretching and vibrational 
modes of OH- ions and those at 1087, 1032, 962, 601, 571 and 474 cm-1 ascribed to PO4

3- 
vibration modes, while the HPO4

2--derived band at 875 cm-1, CO3
2- absorption at 1410 cm-1 and 

weak shoulders at 990, 970 and 945 cm-1 indicative of α- and β-TCP were absent192. In another 
one of the studies193, any T < 95 oC required ripening periods extending up to 20 h to obtain pure 



HAP. The size and crystallinity of HAP particles increased with increasing the precipitation 
temperature. Intuitively, this could be explained by assuming that the number of nuclei formed is 
proportional to S, which would be lower at a higher temperature. Smaller number of nuclei, on 
the other hand, implies the formation of larger particles. However, simple solubility product 
calculations can show that an increase in temperature corresponds to higher, not lower S, and the 
magnitude of change in S per oC is higher in the vicinity of the physiological conditions than in 
alkaline conditions with pH > 10194. In fact, according to Le Châtelier’s principle, an increase in 
temperature entails a rise in solubility in case of endothermic dissolution processes and a drop in 
solubility in case of exothermic ones. As the precipitation of CAP can be considered an 
endothermic process195, an increase in temperature will yield lower solubility and, therefore, 
higher S. However, the fact that precipitation of HAP involves numerous transitions between 
phase intermediaries, some of which are exothermic and some of which are endothermic, 
predicting the temperature effect on the phase transformation pathways is difficult. The fact that 
these theoretical predictions (i.e., higher S and smaller particle size at higher temperatures) often 
deviates from experimental observations implies that the thermodynamic complexity of these 
phase transformation pathways may have a decisive effect on the morphology and size 
distribution of the precipitated CAP particles. The reason for failure of one such standard model 
may also be due to the effect of higher diffusion rates at higher heat contents of the solution 
offsetting the dependence of S on the temperature of the system. Namely, higher diffusion rates 
contribute to the ability of ions to find more energetically favorable positions in the crystal 
lattice, resulting in a better crystallinity.  
 The composition of the initial amorphous phase is known to depend on pH, and is 
approximately Ca3(PO4)2 (Ca/P molar ratio = 1.5) at high pH values, whereas the Ca/P ratio 
approaches 1 at lower pHs196. It is assumed that as the amorphous phase matures at an almost 
constant pH, its Ca/P molar ratio increases to values that correspond to HAP stoichiometry, 
which implies that the transformation process will take place faster at higher pHs. The rate of 
conversion of the amorphous CAP to HAP has been shown to increase with pH in the range of 7 
– 10 and then to decrease at higher pH197. Typically, measuring [Ca2+] and [HxPO4

x-3] in the 
supernatant results in observing a drop in [Ca2+] that follows a sigmoidal trend, similar to the one 
of the aforementioned pH vs. t dependence, whereas [HxPO4

x-3] increases yielding also a 
sigmoidal curve. The reason is that from the point of precipitation of amorphous CAP, the phase 
transformation proceeds with the shift in the Ca/P molar ratio of the precipitate from 1 – 1.5 to 
1.667, implying a release of PO4

3- ions into the solution over the course of ripening. This also 
implies that a decrease in the induction time can be related to a decrease in [HPO4

2-] and an 
increase in [CaPO4

-] in the solution, pointing to the former as a retarding and the latter as a 
promoting parameter of crystallization. It is, however, still not clear if this phase transformation 
takes place through an internal structural rearrangement of the metastable phase or by 
dissolution/re-precipitation. Ever since the dark line observed in the center of enamel crystals198 
was shown to be OCP phase, it has been speculated that it should be a remnant of the OCP phase 
composition of either the initially precipitated or the most dominant transitory phase199,200. 
Claims that the precipitated apatite is normally a solid solution rather than a double salt of OCP 
and HAP may speak in favor of partial or complete transition between these CAP phases in the 
solid state. Brown et al. have thus proposed that the hydrolysis of a unit cell thick layer of OCP 
transforms the latter to a two unit cell thick layer of HAP, which may thus be the mechanism for 
OCP → HAP transformation201. If that is so, the phase transformations would be both solution-
mediated and controlled by the diffusion of ions within the lattice. A contrary argument is that 



since the amorphous phase is a random network of bonds rather than a periodic structure, there 
could be no direct structural matching between the crystalline phases, implying that the phase 
transformation has to proceed via dissolution. If that is true, the process would be diffusion- or 
surface-reaction-controlled and consequently highly dependent on temperature and pH, which 
has indeed been experimentally confirmed. It was also shown that washing the precipitate at the 
stage where it is still amorphous increases the final Ca/P ratio due to removing the acidic layers 
of HxPO4

x-3 ions surrounding the growing particles (as already mentioned, it appears that HxPO4
x-

3 ions are more effectively absorbed onto HAP particles than Ca2+, and can be therefore used for 
manipulating their ζ-potential202,203 and thus controlling the efficiency of adsorption of 
biomolecules and cells thereto204), thereby validating the effect of exchange of ions between the 
solution and the precipitate on the final identity of the latter205. This can also be confirmed by the 
fact that during the ripening period, the precipitate could be isolated as a powder and analyzed 
for its structure without being subject to phase transitions in the solid state. If the presence of the 
liquid phase is required for the proper ripening, the transition has to at least partially follow a 
dissolution/recrystallization mechanism. That these phase transitions are solution-mediated can 
also be supported by another set of experiments in which it was observed that the amorphous-to-
crystalline conversion starts sooner in the presence of more intensive stirring, as well as that the 
amorphous precipitate is prevented from undergoing the transition to crystalline CAP phases by 
placing it in ethanol or acetone instead of water206.  
 On the other hand, under low saturation conditions when the crystal formation occurs 
primarily through diffusion of ions onto already existing surfaces, the mechanism of nucleation 
can be substantially different in comparison with the one existing at high S when amorphous 
apatite is known to present the intermediate. In biological conditions, S is maintained at low 
levels for the purpose of letting the crystallization proceed as controlled by macromolecules and 
not by the thermodynamic propensities of the system. In view of that, the possibility that HAP 
forms directly upon a preexisting template cannot be discarded. Epitaxial effects were many 
times proven as essential in self-assembly procedures, and many biomineralization mechanisms 
(e.g., crystallization of thin flakes of nacre in the mollusk shells) inherently depend on the 
interfacial structural matching between an organic substrate and an inorganic phase. The driving 
force for the epitaxial growth is the tendency of the growing phase to approach the state of a 
minimal interfacial energy, which occurs when the two lattices precisely match each other. It is a 
general rule that a certain lattice mismatch in the overgrown phase (as compared with the ideal 
lattice parameters) occurs irrespective of the nature of the substrate (organic or inorganic), so 
that a certain flexibility in the overgrown phase is required for the epitaxial growth to be favored. 
HAP certainly presents one such phase as it can form even at Ca/P molar ratios as low as 1.33 
(although Ca/P of biological HAP is normally in the range of 1.5 - 1.67) owing to a high 
structural flexibility and tolerance to defects, primarily in terms of calcium vacancies in the 
crystal lattice of HAP. HAP at such a low Ca/P molar ratio would require a removal of two 
calcium atoms from the stoichiometric formula and protonation of two PO4

3- groups (i.e., 
Ca8(HPO4)2(PO4)4 with completely empty halide and hydroxyl columns and the hexagonal 
structure preserved, which is required to maintain the charge neutrality)207. Biomineralization 
processes are, in fact, based on using only a few inorganic minerals, but endowed with 
exceptional structural flexibilities, such as calcite, silica or HAP, so that they could be shaped 
into materials with a wide variety of different properties208. However, there is one problem tied 
with the hypothesized immediate formation of HAP during its precipitation in biological 



environments, and it is a large local drop in pH following its formation. Namely, for each unit 
cell of HAP formed, 8 protons are released into the solution: 
 

10Ca2+ + 6HPO4
2- + 2H2O → Ca10(PO4)6(OH)2 + 8H+  

 
This number may, however, be lower depending on the amount of carbonate (or other 

ions present in the solution) incorporated in the lattice and whether hydrogen or dihydrogen 
phosphates, as dominant in the physiological pH range of biomineralization, are consumed in the 
process as precursor phosphate ions. Also, phosphate and carbonate species as well as proteins in 
the extracellular matrix in which the mineralization proceeds may act as adequate buffers to 
mitigate the release of protons following the formation of HAP if the process proceeds at a slow 
pace. Nevertheless, HAP is the second most basic CAP phase (TTCP being the only more basic 
phase thereof), and the intensive pH drop following its direct formation still may be harmful for 
the surrounding tissues. Brown et al. have thus claimed that TTCP, a rarely mentioned CAP 
phase, may present an intermediate in the formation of biological HAP209. However, they have 
also observed that its immediate transformation to HAP would produce a significant increase in 
pH due to release of OH- groups. Namely, the TTCP→HAP transition via hydrolysis of TTCP is 
entailed by a rise in pH: 

 
3Ca4(PO4)2O + 3H2O → Ca10(PO4)6(OH)2 + 2Ca2+ + 4OH- 

 
The formation of TTCP as one of the intermediary phases, however, implies that pH does 

not necessarily need to drop during the formation of HAP. For example, if TTCP happens to be 
mixed with some of the more acidic CAP phases, such as DCPD, DCPA or MCPM, the 
transformation reaction may proceed without drastic changes in pH of the medium and, 
therefore, without imposing chemical stress on the adjacent tissues. The latter mechanism could 
be supported by the fact that solubility curves for TTCP and DCPA closely match at around pH 
7.6. From this observation, it can be concluded that the complexity of phase transformations 
during the formation of HAP is enormously high and still largely open to exploration, scrutiny 
and dispute.  

During the TTCP→HAP transformation, pH can climb up to almost 12 before eventually 
descending down to close to neutral or even acidic values. The magnitude of this increase was 
shown to depend on whether stoichiometric or calcium-deficient HAP forms, with the pH 
increase being more pronounced in the former case. The trend is, as expected, dependent on the 
temperature, owing to large activation energies intrinsic to these reactions. It is interesting that 
concentrations of Ca2+ and HxPO4

x-3 ions in the solution are also prone to exhibit humps 
following complex transformations for which it is still not clear whether they take place in the 
solid state or entail dissolution/recrystallization pathways210. Incorporation of CO3

2- into HAP 
crystal lattice is another factor contributing to the decrease in pH, and that especially when the 
reaction is carried out under atmospheric conditions. This clearly brings us to the task of 
discerning the influence of dissolved gases on the precipitation processes. It is known that 
precipitation of numerous ceramics crucially depends on the presence of oxygen and the 
oxidation reactions brought about in its presence211. In view of that, it is also worth recalling that 
atomic aggregates do normally present crystallization nuclei (and 1.2 nm is usually considered as 
the critical size after which an unstable embryo becomes able to transcend the free energy barrier 
and continue to grow by diffusion and/or ripening), this is not necessarily the case. This role is 



sometimes fulfilled by individual molecules in the excited or ionized state, such as in the case of 
formation of water droplets from supersaturated vapor. Likewise, the nucleation process during 
precipitation of ferrites from an alkaline solution is supposed to be centered around the Fe(II) → 
Fe(III) oxidation process212,213. Gas bubbles are proposed as acting as electrostatic carriers of the 
incompletely understood long-range attraction forces between hydrophobic surfaces214,215, and 
their full range of influence, similarly to that of ions in Hofmeister series in terms of their effect 
on protein aggregation and assembly, is still unknown216,217. The fact that small differences in 
the gaseous content can trigger significant ones in the experimental outcomes is quite intriguing, 
and yet often omitted from serious chemical analyses218. The effect of the nucleation surface, 
which is often disguised in terms of the reaction vessel walls, is another frequently neglected 
factor that, however, sometimes crucially defines the morphological propensities of the particles. 
In that sense, there is the example of BaSO4/BaCrO4 nanofilamentous superstructures formed 
after their self-assembly either on glass walls or TEM grids, but when the identical procedure 
was attempted in plastic bottles, the crystallization experiments failed219. Many similar examples 
wherein changes in the vessel geometry or batch size significantly altered the experimental 
outcomes may be found in the literature220. Minor changes in the rate at which the reactants are 
mixed or introduced to the mixture can often have a drastic effect on the identity of the 
precipitate. Namely, upon abrupt mixing, even though S may in theory correspond to a 
metastable supersaturated state, locally produced high reactant concentrations may lead to 
irreversible formation of nuclei and a premature precipitation under uncontrolled local conditions 
(wherein pH and ionic activities may significantly differ from measured or calculated bulk 
values221). It is known that texture and porosity of the external substance are important as they 
can heavily influence the HAP nucleation efficiency222. This probably explains why Tadashi 
Kokubo, the inventor of the method for evaluating the bioactivity of a compound by immersing it 
in SBF and awaiting the formation of HAP, suggested discarding any plastic bottles with visible 
scratches and never reusing them for storing SBF223. Namely, SBF is a metastable solution with 
S with respect to HAP normalized per growth unit equivalent to 19.5, and to avoid premature 
crashing of one such solution storing it in a vessel with smooth wall surface and without any 
particulate remnants of formerly formed precipitates therein stands forth as of vital importance 
for reliable bioactivity analyses. A metastable solution, which could be in theory stable 
throughout geological times, may often turn into an immediately crashing solution if the slightest 
amount of impurities is introduced to it, as in accordance with the more energetically favorable 
heterogeneous nucleation compared to the homogeneous. In fact, it is claimed that CAP is 
sensitive to impurities of less than 10-6 % (0.01 ppm); that impurity molecules present 
condensation centers for the formation of amorphous CAP; and that they as such present the 
basis for the primary particle formation during crystallization of HAP224. The kinetics of enamel 
dissolution has also been found to be strongly influenced by the presence of impurities released 
to the solution during the reaction225. In view of this, depending on minor effects of impurities or 
changes in the experimental conditions, an unexpected pH vs. t trend can be triggered, signifying 
deviations from the standard precipitation pathways. Solutions that are particularly prone to 
exhibit this sensitivity are those that lie towards the middle of the metastability zone, between the 
levels of saturation (S = 1) and critical supersaturation (S > 19.5). 

One of the ways to assess the metastability of CAP solutions and the extent of the 
nucleation promoting/inhibiting effect of additives is to measure the aforementioned nucleation 
induction time of the solutions at different saturations and different concentrations of additives. 



Since a direct measurement of the nucleation rate is difficult, one of the most common ways to 
assess the kinetics of nucleation is to measure the induction time at different supersaturations.  

Expressions for the inverse of the induction time for nucleation, τ, and for the nucleation 
density, N, are given by classical nucleation theory as: 

 
1/τ = Ωexp(ΔG*/kT) = Aexp(-βν2γ3/(kT)3(lnS)2)  

 
N = Bexp(-βν2γ3/(kT)3(lnS)2)  

 
ΔG* is the activation energy for nucleation, Ω is a preexponential factor, γ is the 

interfacial tension for the formation of the critical nucleus (typically comprising 10 – 100 atoms), 
S is the supersaturation ratio of the solution, β is a shape factor, ν is the molecular volume, k is 
the Boltzmann constant, T is temperature, and A and B are constants. Induction time is the 
consequence of the activation energy required for nucleation, ΔG*, which depends on the 
interfacial tension for formation of the critical nucleus, γ, and S. From the equations above, we 
could see that the induction time is reduced and the nucleation density is increased by lowering 
the interfacial tension, γ, of a CAP solution. For example, promotion of heterogeneous 
nucleation of CAP in the presence of another solid surface indicates that this other phase reduces 
the CAP solution interfacial tension compared to homogeneous nucleation of CAP in the absence 
of the additive. The equations above also predict that nucleation is promoted by increasing S. 
They also indicate that systems with higher nucleation densities, leading to smaller particles, 
should also have shorter induction times. The amount and nature of precipitated CAP also varies 
with the concentration of the additive. Higher amounts of a peptide additive may result in higher 
degrees of binding of Ca2+ and HxPO4

x-3 ions, causing depletion of species from the solution, 
lowering S and reducing the driving force for nucleation. Certain additives may also have 
opposite effects on nucleation depending on their concentration. It was thus pointed out that the 
concentration of amelogenin, the main protein of the developing enamel matrix, has a directly 
proportional effect on the amount of CAP precipitated and is inversely proportional to the 
induction time at low concentrations226. There is, however, evidence that this trend becomes 
reversed at high concentrations, when amelogenin starts acting as a nucleation inhibitor227.  

Furthermore, in case of the classical heterogeneous nucleation, the nucleation rate is 
equal to: 

 
J = Aexp(-ΔG/kT) = Aexp(-16πυ2γ3f(θ)/3k3T3(lnS)2)  

 
Molecular volumes defined by the crystal structure, υ, for HAP, OCP and DCP equal 

263.24, 310.59 and 126.53 A3, respectively; γ was estimated as ~ 40 mJ/m2 at the interface 
between a growing HAP phase and a metastable supersaturated solution228; f(θ) is the contact 
angle function for a nucleus on a substrate; (16π/3) is the geometric factor, corresponding to 
spherical nucleus, and is different for other nucleus shapes (32 for cubic, e.g.).  

So we see that since exp(-1/lnS2) = S2, both the nucleation density and the nucleation rate 
are proportional to S2, whereas the crystal growth rate, J, is proportional to Sx. It can be 
represented as equal to kSx, where k is the rate constant and x is the reaction order. Different 
reaction orders correspond to different mechanisms of crystal growth with 4 main scenarios: (a) 
mass transport and diffusion-limited growth at very high levels of S (x = 1); (b) polynucleation 
of surface growth islands at high S (x > 2); (c) layer-by-layer growth at moderate S (x = 1); and 



(d) screw dislocation growth at low S (x = 2). Except for the case of x > 2, all these mechanisms 
are valid for both growth and dissolution. For diffusion-limited growth, typically taking place at 
high S, x = 1. This implies that in a relatively high S range, an increase in S would lead to the 
nucleation rate increasing more than the crystal growth rate does. This explains why the smaller 
the particles one tends to obtain, the conditions of higher S one should produce. More nuclei are 
then produced, and consequently the final particles will be smaller in size. In contrast, in order to 
obtain a monocrystal, a single nucleation event has to be produced in the solution, followed by 
the crystal growth; consequently, conditions with a low S need to be set. 

Crystallization of HAP at low S, with or without the presence of an organic phase, is 
shown to be a second-order reaction, corresponding to a surface-diffusion-controlled spiral 
growth mechanism229. The fact that stirring of the reaction mixture does not typically produce 
any effect on the crystal growth rate excludes the possibility that the rate-determining step under 
low S could be the bulk diffusion of ions. At very low concentrations, additive molecules cannot 
influence the volume transport processes and their effect, therefore, must be due to their 
participation in the surface reactions in the adsorption layer. However, sometimes at low 
concentrations and that particularly when polynucleation mechanism of growth takes place, 
additives may promote nucleation by increasing its rate. On those occasions, additive molecules 
may be adsorbed specifically on certain sites of the crystal surface (in general, their binding will 
be strongest at kinks, moderate at steps, and weakest on crystal terraces), so that bridges are 
formed, wherein the additive molecules may transport the growth units more efficiently to the 
crystal surface. This mechanism bears resemblance to the one describing the formation of silicon 
nanowires in the vapor-liquid-solid (VLS) process, during which nanodroplets of gold deposited 
on top of silicon wafers attract silicon atoms from the vapor, and after becoming supersaturated 
with respect to silicon begin to precipitate it, building well-aligned nanowires oriented 
perpendicular to the underlying surface230,231. That the same additive may promote nucleation at 
low surface coverage and inhibit it at higher concentrations has been explained by hypothesizing 
lowering of the surface energy following absorption whenever the nucleation-promoting effect 
takes place. However, as pointed out by Zhang and Nancollas, “Since the surface underneath 
covered by additive molecules can no longer participate in the formation of surface nuclei, this 
explanation for rate promotion is merely phenomenological”232. On the other hand, at higher 
concentrations, the adsorbent layers are expected to hinder the delivery of growing units from the 
solution onto the growing sites on the crystal surface233.  
 Finally, it is worth keeping in mind that the conceptual framework for analyzing CAP 
phase transitions based on supersaturation is an approach that possesses fundamental limitations. 
Related to free energy of the dissolution reaction (ΔGs = -RTlnKsp), Ksp is a thermodynamic 
property. ΔG of the precipitation reaction is equal to: ΔG = -RTlnS, which implies that the larger 
the S, the greater the driving force for precipitation. This implies that solution speciation in 
general is a thermodynamic consideration. Consequently, whenever kinetic effects take place, 
solubility product fails to provide a good basis for describing the precipitation process. The 
effects of the interaction of ions and small particles with organic molecules present such cases. 
As the result, the effects of ion association and complexation in the solution may significantly 
lower the free ion concentrations compared to the calculated values.  

In addition, calculating ionic activities that figure in equations for S and Ksp is always an 
approximation owing to the following effects. Firstly, all the additional species (ions, aliphatic 
additives and macromolecules, etc.) can influence the solubility of the given compound, even 
though they may not participate in the reactions. Common ion effect is the consequence of Le 



Châtelier’s principle, and according to it, a salt will be less soluble if one of its constituent ions is 
already present in the solution. Uncommon ions tend to increase solubility by increasing ionic 
strength of the solution, which is usually referred to as the salt effect or the diverse ion effect 
(Fig.3). Complexation can also modify the amount of free ions in the solution (that is, their 
activities). This is particularly the case for biological fluids where complexation reactions 
involving many organic species in the solution may make ionic concentrations markedly deviate 
from the resulting ionic activities. Also, in case of purely inorganic systems, the substantial 
complex formation introduces additional limitations in the application of the concept of 
solubility product.  

The assumption that all the oppositely charged ions in solution are thoroughly hydrated 
and separate is not valid. The effects of ion association and complexation in the solution may 
significantly lower the free ion concentrations compared to the calculated values. Also, the 
equilibrium described by Ksp refers not to all chemical compositions of the solid phase, but to a 
specific phase. Hence, calcite, aragonite and vaterite are all described with the same chemical 
formula (CaCO3) and yet have different Ksp. Even so, it is only one phase that in most cases 
enters the equilibrium. Then, Ksp is defined for large monocrystals for which surface area effects 
are negligible. However, solubility increases with decreasing the particle size and once particles 
become smaller than 1 μm in diameter, this effect has to be accounted for. Specific structuring of 
water molecules around solutes and colloidal species also affects the thermodynamics of phase 
transitions in solution. For example, the release or trapping of water following the formation of a 
solid has been shown to modify the energy landscape of initial and final free energy states of 
most precipitation reactions234. On the other hand, just as each self-assembly event implies a co-
assembly of the immediate environment surrounding the assembling system235, each 
crystallization event can be seen as a process of a simultaneous rearrangement and restructuring 
of the interfacial water molecules. From one such point of view, the kinetic attributes of the latter 
process can be considered as a crucial factor in determining the crystal formation rate.  

Note also that in reality every phase transition follows a non-classical model. Whereas 
the classical nucleation model predicts that the nucleation rate should continuously increase with 
S, the non-classical model is built on the assumption that there are two antagonistic effects taking 
place. Namely, the higher the S, the larger will be the thermodynamic driving force for 
nucleation, inducing the latter to proceed at a higher rate (although this rate normally decreases 
as nucleation proceeds due to depletion of growing units from the mother phase). But on the 
other hand, moving the system state away from equilibrium modifies the transfer of matter 
between the growing embryos and the mother phase, and since this transfer has to be ensured for 
the nucleation to proceed, this shift can significantly delay nucleation in some cases. In case of 
the glass formation, for example, an ultrafast cooling promotes the latter effect, leaving the 
system in the metastable state with an extremely slow transformation to the stable, crystalline 
form. If one would make an attempt to condense water vapor at the temperature of liquid 
nitrogen, at first it may seem that such a transition would proceed momentarily. But it is not 
so236. Namely, at such a low temperature, the equilibrium pressure of water vapor (po) is so low 
that one collision between its molecules (which is the first step to the formation of an embryo 
that then has to advance forming a stable nucleus or to simply dissipate) occurs every 1016 years. 
To induce nucleation, one would have to increase supersaturation ratio (p/po) to ~ 1012 by 
compressing the system and increasing its concentration. In contrast, condensation of water 
vapor at atmospheric conditions occurs in the supersaturation range p/po = 5 – 8. As we see, this 
antagonistic effect implied by the fact that the mother phase has to ensure a reasonable supply of 



matter to the embryo for nucleation to proceed becomes most critical in far-from-equilibrium 
conditions, although complex kinetic conditions within a system may sometimes predispose it to 
exhibit such far-from-equilibrium characteristics even though its state lies close to equilibrium. 
The fact that nucleation rate is subject to variations, both before and after the critical point is 
reached, and depends on the system in question, contributes to difficult predictions of nucleation 
and crystal growth rates in any real systems. 

 
1.4. Characterization of structural properties  

 
As complementary to various microscopic techniques used to visualize morphology and 

structure of CAP particles at micro and nano scales, spectroscopic techniques, such as X-ray 
diffraction (XRD), are routinely applied to study the phase composition of CAP precipitates. 
Rietveld analysis can be used to detect the shift of diffraction peaks along the 2θ axis compared 
with the stoichiometric values. This shift is proportional to the lattice distortion (that is, a change 
in the unit cell constant), and can be correlated with Ca deficiency, for example. Also, the 
intensity ratio between different peaks can be used to study the crystallographic orientation for a 
given morphology. For example, if (100), (200) and (300) reflections are more intense than those 
of a standard HAP, it signifies that the particles (fibers in this case) grew along the c-axis, that is, 
with the preferred orientation along the {h00} planes. Even the morphological difference 
between needles and bars of HAP could be thus clearly read on the corresponding XRD 
patterns237. The specificity of orientation of crystals on a given substrate, particularly interesting 
for HAP growth experiments that aspire to result in enamel-like structures (f = 0.86), can also be 
estimated from an XRD analysis by calculating the Lotgering orientation factor, f = (P – Po)/(1-
Po), where P = I(00l)/I(hkl) of the sample and Po = I(00l)/I(hkl) of the standard238. The crystallite 
size can be calculated from the broadening of (002), (222) and (300) diffraction peaks using the 
Debye-Scherrer equation, assuming that HAP crystals are prism-shaped with the height equal to 
the crystallite size along (002) plane (c plane) and the length corresponding to the crystallite size 
along (300) plane (a plane)239. The main diffraction peaks for DCPA, α- and β-TCP, DCDP, 
CAP, and OCP are listed in Table 2, whereas those for stoichiometric HAP are shown in Table 3.  

 
Table 2. The main X-ray diffraction peaks for the selected CAP phases. Adapted and partially reproduced from Ref. 

240.  

 
Table 3. The main X-ray diffraction peaks for stoichiometric HAP, according to ASTM Card No. 9-432.  



 
 
Infrared (IR) and Raman spectroscopies are often used to qualitatively detect and discern 

CAP phases, although with much less precision than XRD (Fig.9). IR and Raman spectroscopies 
are, on the other hand, particularly useful for studying the structure of inorganic/organic 
composites, owing to a facile detection of bonds within organic molecules as well as a high 
sensitivity of the position of the bands depending on the local environment surrounding the given 
vibration. However, unlike IR spectroscopy where a large absorbance of water poses obstacles in 
probing precipitates in their aqueous environments, Raman spectroscopy does not suffer from 
this problem. As in XRD analyses, the bandwidth can be used as an indicator of crystallinity and 
the amount of defects of the material in the sense that wider peaks indicate lower short-range 
order. Since vibrational frequencies of stretching vibrations are correlated to bond length and 
bond strength, frequency shifts of IR/Raman bands can be used to estimate changes in the local 
environment surrounding the active species241. As a rule, hydrogen bonding decreases the 
frequency of stretching vibrations, as it lowers the restoring force, but increases the frequency of 
bending vibrations.  



The main Raman band for HAP is ν1(PO4) at 960 cm-1, deriving from a totally symmetric, 
non-degenerated stretching mode of the “free” tetrahedral phosphate ion. The other three 
phosphate peaks are found at 400-500 (ν2), 550-650 (ν4), and 995-1120 cm-1 (ν3). The latter band 
is particularly interesting because it presents the key for discerning HAP from OCP, the two 
CAP phases that show a tremendous resemblance in their IR and Raman spectra242,243. Namely, 
unlike HAP, OCP exhibits a peak at ~ 1015 cm-1 positioned between ν1(PO4) and the main 
doublet of ν3 bands with peaks at 1045 and 1075 cm-1. The main CO3

2- peak is at ~ 1080 cm-1 or 
~ 1110 cm-1, depending on whether the fully or partially carbonated HAP is of B-type or A-type, 
respectively244. This peak, can, however, overlap with the main triply degenerated asymmetric 
stretching mode vibration245 of the P-O bond, ν3, at 1087 cm-1. The other two components of this 
vibration are said to appear at 1046 and 1032 cm-1, whereas the weak peak at 472 cm-1 with the 
shoulder at 462 cm-1 belongs to the doubly degenerated bending mode of PO4 group, ν2, and the 
peaks at 601, 575 and 561 cm-1 are assigned to a triply degenerated bending mode, ν4, of the O-
P-O bond. In addition, IR spectroscopy could be used to detect CO3

2- ions in the apatite structure. 
The CO3

2- bands appear at 755 cm-1 for the ν4 stretching mode, 872 cm-1 with the shoulder at 880 
cm-1 for the ν2 stretching mode, and at 1418, 1456, 1506 and 1558 cm-1 for the ν3 stretching 
mode. The bands at 872, 1418 and 1456 cm-1 indicate the B-type of carbonated HAP, while those 
at 880 and 1558 cm-1 are typical of the A-type246,247. The intensity ratio between 880 and 872 
cm-1 bands (I880/I872) can be used to determine the ratio between CO3

2- substitutions of OH- (A-
type) and PO4

3- (B-type) groups in carbonated HAP248. On the other hand, alterations in the HAP 
lattice parameters could be used to detect the presence of carbonate and other additives from 
XRD. Precisely, the incorporation of the CO3

2- ions in the hexagonal channel of the apatite 
structure (A-type HAP) leads to an increase in the lattice parameter a and a markedly lesser 
decrease in the parameter c in comparison with the stochiometric HAP. In contrast, the parameter 
a decreases while c increases with a partial substitution of PO4

3- by smaller CO3
2- ions (B-type 

HAP).249 XRD is thus ideally used to detect phase purity, whereas X-ray fluorescence proves 
convenient for detecting Ca/P molar ratio and content of other additives or impurities. 
Incorporation of CO3

2- ions in the crystal lattice of HAP leads to reduction of symmetry, a 
decrease in the crystallite size and increased degree of distortion, thereby inducing an increase of 
the band width and a shift of the ν1(PO4) band to lower wavenumbers. If ν1(PO4) peak at 960 cm-

1 is shifted to ~ 965 cm-1, it signifies the presence of non-carbonated, pure HAP, whereas a large 
shoulder at 950 cm-1 signifies amorphous CAP. Hence, broadening of this spectral line can be 
calculated to estimate the proportion of carbonated apatite in a HAP sample. For β-TCP, the 
symmetric stretching band is split to a peak at 950 and a peak at 970 cm-1. This splitting that 
reflects the difference in the intratetrahedral P-O bond lengths for the different nonequivalent 
PO4

3- ions of β-TCP structure is much smaller for HAP and FAP. Lattice modes for HAP are 
present at < 350 cm-1, and ν1(OH) is present at 3575 cm-1.  



 
Fig.9. Typical Raman spectra for the main CAP phases. All visible peaks are caused by P-O stretching and bending 
modes of vibration. The 800 – 1200 cm-1 wavenumber area magnified on the right shows only stretching P-O 
modes. As a consequence of different crystal symmetries of the different CAP phases, the P-O vibrations in each 
one of them are surrounded by a specific atomic environment, which causes a specific shift of the corresponding 
bands along y-axis. This shift can be used to identify the given phases. Reprinted with permission from Ref.250. 
 
2. Application 
 

Owing to their being the elementary constituent of hard tissues, CAP materials have been 
so far mostly used for biomedical purposes, that is, for the substitution of damaged hard tissues. 
The application of HAP, however, extends beyond the scope of biomedicine. For example, HAP 
has been applied as an adsorbent in chromatography for separation of proteins and DNA251,252. In 
nanosized form, it has been applied as a stimulus-responsive stabilizer in Pickering emulsions253, 
following the observation that colloidal CAP in milk is involved in stabilizing casein micelles254. 
It has also been used as a nutritional supplement and a raising agent in the food industry. In the 
field of fertilizers, HAP has been used as the essential ingredient of dialysis pouch systems for 
maintaining concentration of phosphates in the plant root environment255. In the context of water 
purification processes, both synthetic and biological HAPs have been applied for the removal of 
heavy ions256. However, although CAP materials have been used for a variety of purposes, the 
main area of their application is still medicine, and this is why this part of our discussion will 
focus on this particular field.  
 
2.1. The promises of nanomedicine 
 

It has been shown that an increasing ability of humans to control physical phenomena at 
ever finer scales implies the trend of continual miniaturization of electronic devices and the 
eventual “descent” of human technologies into the nano range257. Consequently, nanoscale tools 
and devices are expected to increasingly find usage in numerous aspects of the modern society. 
The modern medicine is thus only one among the fields that is currently undergoing a transition 



towards ever finer and more sensitive methodologies in terms of finely targeted and superiorly 
efficient delivery of pharmaceutical agents that minimizes the side effects of medical 
treatments258.  

Many eyes are thus focused on the promises of nanomedicine (Fig.10), which can be 
roughly defined as the application of physical chemistry of nanoscale phenomena for biomedical 
purposes259. Although only a few nanoparticle-based drugs have so far been approved by the 
FDA, it is estimated that the impingement of nanomedicines on the modern society will only 
increase in the coming years260. Also, with approaching the patent expiration times, the biotech 
industries are intensively seeking new competitive business strategies, and nanomedicine is often 
mentioned as one of the key focuses. In view of their offering solutions to fundamental 
pharmaceutical problems ranging from poor solubility of drugs to the lack of target specificity, 
nanotechnologies are viewed as a potential revolution in the world of medicine. 

 
Fig.10. A few of the major contemporary candidates for drug and gene delivery carriers. Reprinted with permission 
from Ref.181. 
 

A particular emphasis in biomedical research is, therefore, placed on nanosized drug 
delivery carriers for either local or systemic use. Many biopharmaceuticals have limited long-
term structural stability when formulated at high concentrations, which limits their shelf-life. In 
addition, many are susceptible to biodegradation when delivered, which in addition to their 
frequently extensive hydrophobicity, reduces their bioavailability. For localized treatments, the 
delivery vehicle is meant to be retained at the delivery site, ensuring the local and rate-controlled 
administration of the therapeutic. For therapeutics delivered systemically, through the 
vasculature, the nanoparticulate carrier is expected to: a) prolong the circulation time in plasma; 
b) enable carrying of hydrophobic drugs to their destination in the body, thus preventing their 
clumping in the blood and increasing their bioavailability; and c) through a proper mechanism 
(such as surface functionalization or guiding via an external field), it may direct the therapeutic 
to a desired tissue. 

The majority of nanomedicines on the market are still merely pharmaceuticals that are 
formulated into nanosized structures in order to manipulate the pharmacodynamics, 
biodistribution and overall effectiveness of the drug261. The main purpose of decreasing the 
particle size of poorly water-soluble drugs down to nanoscale is an accelerated absorption and a 
higher efficacy produced thereby. This results from the fact that the solubility and dissolution 



rate of a drug can be increased by reducing the particle size to increase the interfacial surface 
area, in accordance with the Noyes-Whitney equation262. However, using nanoparticles as 
“smart” drug carriers for both a controlled drug release and ultrasensitive diagnostics would 
present the next step. Irrespective of the delivery method (local or systemic), the nanomaterial 
would in this case act as a depot and a carrier for therapeutic agents, providing a convenient 
solubilizing and protective environment. Both the shelf-life of the therapeutic prior to 
administration and the delivery efficacy upon administration are thus expected to be increased. 
The efficacy of delivery of many other drugs, including human growth hormone, leuprolide, 
insulin, as well as highly water insoluble drugs, such as paclitaxel (small hydrophobic drug used 
for the treatment of cancer), levonorgestrel (used for female birth control), and morphine was 
increased upon their incorporation within specific drug delivery vehicles, whereby 
pharmaceutical compounds having been delivered so far by nanocarriers include mostly small 
molecules, peptides, and DNA263.  

Many different systems are nowadays investigated for their usage as drug delivery 
carriers, including micelles, vesicles, polymers, microspheres, hydrogels, and solid implantable 
devices, such as microchip-based drug delivery systems consisting of microfluidics combined 
with sensors264. However, as we shall see, inorganic nanoparticles offer many advantages in 
comparison with other concurrent systems. In addition, owing to their high surface-to-volume 
ratios, nanoparticles offer enhanced reaction sites compared to their bulk counterparts. As 
smaller, they also more easily penetrate the extracellular space and are more efficiently absorbed 
by the cells, thereby increasing the efficiency of the therapeutic action.  

 
2.2. Why calcium phosphates? 
 
 CAP particles with tunable phase composition and thus the resorption rate offer an 
advantage of increasing the efficiency and local character of the drug delivery as well as a 
controlled release over time. A reduced dosage and frequency of administration, and 
consequently fewer side effects, would result thereby. By means of fine CAP particles that are 
stable prior to injection and then comparatively slowly resorbed in the body, the active 
compound is protected until the particles are injected and delivered to the targeted site, after 
which a controlled release, tunable to anywhere between a few days to a few weeks, may be set 
to take place.  

CAP particles are also able to permeate the cell membrane and dissolve in the cell, which 
makes them an attractive candidate for gene delivery agents too265,266,267. The encapsulation of 
DNA into CAP nanoparticles protects the nucleic acid from cytoplasmatic environment and 
enables its efficient delivery into the cell nucleus. Non-viral gene delivery systems have been, in 
fact, intensively investigated as possible alternatives to viral vectors for the transfection 
purposes. Although non-viral gene delivery vectors typically possess lower transfection 
efficiencies compared to viral ones, their excellent safety profiles are appealing for gene 
therapy268. Several nanomaterial-based vectors have been developed using functionalized multi-
wall and single-wall carbon nanotubes, metallic, bimetallic, TiO2 and silica nanoparticles, 
magnesium phosphate, manganous phosphate, and various dendrimers269. However, unlike many 
of these options, including poly-L-lactic acid (PLLA) and a few other polymeric particles 
proposed as drug/gene delivery carriers (PLLA, e.g., is typified by a very slow dissolution rate in 
the body, which disables a prompt release of an encapsulated active ingredient, whereas in the 
later stages of dissolution it undergoes a self-catalytic degradation reaction owing to an increased 



release of acidic products harmful for the surrounding tissues270), the degradation of CAP does 
not produce any toxic chemicals apart from the release of Ca2+ (which may in the worst case 
scenario initiate protein aggregation), and these particles are also scalable in size and imply low 
manufacturing costs. In that sense, nanosized CAP particles present one of the most viable 
options for gene delivery systems, and for that reason they have been extensively used as an in 
vitro gene delivery agent for over 30 years and are currently being investigated for in vivo 
purposes as well271,272.  

Structural and chemical features of CAP particles may provide all the essential 
requirements for their efficient usage as genetic transfection agents, including: the binding 
affinity of DNA molecules onto HAP crystals273; the composite particle stability in extracellular 
space; an efficient cellular uptake and resorbability of the particles followed by a gradual release 
of the DNA and its escape from the endosomal network into the cytoplasmatic intracellular 
space, and eventual cytosolic transport and nuclear localization for transcription274. 

Compared to other drug delivery carriers, CAPs possess the following advantages:  
 

• Favorable biodegradability and biocompatibility properties in general. 
 

• Soluble and less toxic than silica, quantum dots, carbon nanotubes or magnetic 
particles275.  
 

• More stable/robust than liposomes, which predisposes them for a more controlled and 
reliable drug delivery. Contrary to liposomes and other micelle-based carriers, which are 
subject to dissipation below specific critical concentrations (which presents a clear 
obstacle upon injecting them into the bloodstream), CAP-based systems and particularly 
those with Ca/P molar ratio close to the one of HAP, are negligibly soluble in blood, 
which is by itself supersaturated with respect to HAP. 
 

• Higher biocompatibility and pH-dependent dissolution compared to polymers276. 
Namely, the dissolution of CAP is accelerated at low pH media, which are typically 
found in endolysosomes and in the vicinity of tumors, providing an advantage in the 
delivery of drugs into malign zones or cell organelles. Also, unlike most metallic and 
oxide nanoparticles, including Au, Ag, Co, Cr, Cd, Se, Te, TiO2, CuO and ZnO, which 
have all been shown to induce damage to DNA, produce oxidative lesions, increase 
mutation frequency and decrease cell viability, nanosized CAP belongs to the class of the 
safest nanomaterials evaluated so far (together with SiO2 and most likely Fe2O3 and 
C60)277. 
 

• Low production costs and excellent storage abilities (not easily subjected to microbial 
degradation). 
 

• Preparation of nanosized CAP is not a complicated task, provided we recall that with the 
exception of enamel, CAP in the biological domain almost exclusively exists in form of 
nanoparticles. This is explained by the free energies of nucleation and of crystal growth 
being approximately the same for a wide range of conditions, implying that the formation 
of elongated HAP crystals is not a strictly favorable process unless it occurs through 
aggregation of smaller, nanosized units278. A multihierarchical model of naturally highly 



defective HAP crystals has thus been proposed279, the lowest element of which 
corresponds to the so-called Posner’s clusters of approximately 1 nm in size. In that 
sense, CAP nanoparticles require less effort and are less time-consuming to prepare 
compared to quantum dots and dendrimers, respectively. 
 

• Unlike other alternatives, both Ca2+ and PO4
3- are naturally found in the body in form of 

amorphous and crystalline solids in hard tissues as well as in blood (in concentrations of 
1 – 5 mM). Ideally, CAP particles would safely be distributed throughout the body, with 
the dissolved material being regulated by the action of kidneys, avoiding their 
precipitation as pathological deposits.   
 

• Unlike most other ceramics, nanosized CAP can be prepared in situ, under ambient 
conditions, in a wide array of morphologies, from spheres280 to platelets281 to rods282 to 
fibers283. In one particular set of experiments, combinations of 2 different temperatures 
(25, 40, 60, and 80 oC), 4 pH values (8, 9, 10, and 11), and 3 drying methods 
(atmospheric, vacuum and freeze drying) yielded a variety of HAP particle morphologies, 
ranging from spheres to rods to wires and needles to “bamboo-leaf-like” ones284. The 
particle morphologies could be optimized for the most favorable dissolution and adhesive 
properties in the body. For example, whereas nanospheres would exhibit less friction 
while moving through plasma, platelets and needle-shaped particles would have a higher 
propensity to adhere285,286, which may be desirable in situations where clearance from the 
mucosal tissues by the mucosal layer disfavors an effective uptake of the drug. 
 

• CAPs can also be prepared with a variety of phase compositions (Table 1), thereby 
enabling fine tuning of the dissolution properties in vivo at the structural level as well. 
For example, the higher the content of TCP on the account of the content of HAP in 
biphasic CAP, the higher the dissolution and resorption rates of the material287,288. The 
optimal drug release rates could thus be tuned by changing the HAP/TCP molar ratio 
within the particles aside from modifying their size and/or morphology. Calcination time 
and temperature can also be used to control the particle size and composition, and have 
consequently been shown to affect the drug delivery performance of HAP 
nanoparticles289. In general, in case of biphasic CAP, tiny differences in chemical 
composition may lead to significant differences in material properties290. Control over a 
single synthesis parameter can thus be used to prepare CAP materials with a wide range 
of intrinsic properties291.  

 
The main potential downside of injecting CAP nanoparticles in the body, which needs yet 

to be assessed prior to reaching clinical application stages, certainly comes from the possible 
atherosclerotic complications associated with their undesirable deposition along the arterial 
walls. Namely, it is known that cholesterol and its derivatives, altogether with various CAP 
phases, primarily HAP, comprise the largest percentage of atherosclerotic plaque292 (Fig.11). 
Structural matching between crystal lattices of cholesterol and HAP and their consequent 
epitaxial co-precipitation are largely assumed to be responsible for their entwined presence in 
these pathological cardiovascular deposits293. Firstly, crystals of both HAP and cholesterol 
monohydrate typically develop (001) faces. Furthermore, OH- ions of HAP lie in planes parallel 
to (001) face and are thus facilely engaged in hydrogen bonding across the exposed (001) crystal 



planes, especially since a fit of the (001) planes of the two crystal structures shows a close 
superposition of the hydrogen bonding groups294. A crystalline layer of either of the two 
structures can thus serve as a quasi-epitaxial nucleation surface for the growth of the other.  

  
Fig.11. Spherical CAP particles found in segments of atherosclerotic deposits. Reproduced with permission from 
Ref.295. 
 

To be truly innovative and advanced, drug delivery carriers should be made 
multifunctional, that is, allow for more than one function upon their injection in the body. 
Theranostic systems that possess the capacity for a simultaneous controlled drug delivery and 
imaging/diagnostics thus hold great prospect in this sense. Smart delivery rates and amounts 
depending on the diagnostic response are meant to be integrated within these particulate systems. 
As recently observed by Sumer et al., “Successful development of theranostic nanomedicine 
requires significant advances in materials science and nanocomposite materials; ideal 
nanomedicine platforms should be small in size, provide high drug-loading densities, be efficient 
in targeting to the diseased tissues with minimal nonspecific uptake, provide responsive release 
mechanisms to improve drug bioavailability and also imaging ultrasensitivity to pre-validate and 
monitor therapy”296. By combining several useful properties within a single particle, 
multifunctional pharmaceutical nanocarriers may significantly enhance the efficacy of many 
therapeutic and diagnostic protocols, and it is them that could be considered as the most exciting 
synthetic ideal in the field of controlled drug delivery, as of today.  
 

2.3. Prospective applications 
 

The first and still the foremost application of nanosized HAP is as components of 
scaffolds for the reparation of impaired hard tissues297,298. In surgical procedures, allografts and 
autografts as parts of hard tissues taken from donors or the patient itself make up for 95 % of 
materials used as bone grafts, whereas only 5 % are synthetic materials299. Whereby in case of 
autografts, two separate surgical procedures are required followed by an increased risk of 
infection and failure, a risk of implant rejection and disease transmission, including the need for 
an extensive sterilization procedure during which the properties of the substitute material are 
often degraded, are present in the case of allografts. Hence, there is a great impetus on the 
research of novel and reliable synthetic materials for substitution of hard tissues. Although 
metals including Fe, Co, and Ti are often used to fill bone defects and provide the internal 
fixation, fatigue, corrosion, tissue infection and poor implant-tissue interface result on many 



occasions300,301. On the other hand, there are problems that prevent the wide usage of ceramic-
based materials for reparation of hard tissues. For example, HAP is all by itself an exceptionally 
brittle material, similarly to most ceramics. Hence, it does not provide a sufficient mechanical 
support for the surrounding bone/skeleton. HAP is the most osteogenic CAP phase, which can be 
attributed to its being the major mineral phase of bone, dentin and enamel; however, its rate of 
resorption is quite low. The rate of resorption smaller than the rate at which new bone forms is a 
discrepancy that impedes proper healing of the bone defect. It has to be set to precisely match the 
rate of expected bone regeneration in order to maximize the efficacy of the healing process302. 
Henceforth, much research has been done on exploring the mixtures of HAP and TCP, known as 
biphasic calcium phosphates (BCP), for the most optimal restoration of hard tissues303,304. 
Namely, TCP and, as of recently CaSO4

305, present more rapidly resorbable osteogenic phases 
than HAP, and are used to balance the low resorption rate of the latter. A medical interest in 
amorphous CAP has likewise been sparkled after the discovery of its higher bioresorbability 
compared to HAP and other CAP phases306. However, the main drawbacks associated with the 
application of amorphous CAP in the body include its low mechanical strength and difficult 
injectability. On the other hand, CAP phases with Ca/P ratio of less than 1 are not suitable for 
biological implantation due to their overly high solubility. The design of a material that is both 
mechanically strong enough for bone replacement and biodegradable is an especially difficult 
challenge for scaffold-based strategies. One of the strategies used to design a biomaterial that is 
both biodegradable and mechanically strong enough to serve as a bone substitute is to couple 
particle dimensions in the nano range with a soft component that contributes tensile properties to 
the stiff ceramic component. Polymer matrices have thus been reinforced with HAP nanocrystals 
to improve the mechanical properties of these polymers307,308. Poly-L-lactide309, poly(lactic-co-
glycolic acid) (PLGA)310,311,312 and collagen313 all present prospective choices as polymeric 
phases that promote cellular adhesion, proliferation and growth. In fact, inorganic nanoparticle 
fillers in general have been shown to add tensile strength, stiffness, abrasion resistance, crack 
resistance, and stability to polymer networks. Depending on the time scale of the desired 
biodegradation of the polymer phase, one may simply vary its chemical nature; PLLA thus 
requires approximately a year to be fully resorbed, polycaprolactone has a biodegradation period 
of about 6 months, whereas PLGA degrades in the body in a month or so. Another step in 
developing advanced regenerative biomaterials comprises introducing growth factors (BMP-2 
and PDGF), cells, antibiotics and additional ions into injectable composites based on CAP and 
various polymers or proteins314.  
 However, the main application that this review will focus on will be the usage of 
HAP/CAP nanoparticles as theranostic drug delivery and gene therapy carriers. In view of that, 
the primary interest may be given to CAP nanoparticles with encapsulated antibiotics. Examples 
of such compounds may be gatifloxacine315 (a fluoroquinolone that has bactericidal property for 
both anaerobic and aerobic bacteria) and ciproflaxacin316, both of which are used for treating 
osteomyellitis. In this case, the inflammation of bone tissue destroys vascular channels, leaving a 
portion of dead and infected bone (sequestrum) detached from the adjoining healthy bone. 
Owing to the impaired vascularity, antibiotics may not be delivered adequately to the lesion by 
the intravenous route. It is usually recommended that the administration of antibiotics lasts 4 – 6 
weeks in the treatment of chronic osteomyelitis; however, through a drug delivery with sustained 
and controlled release rate the necessity of repetitive, daily injections of adequate doses of the 
drug would be eliminated. The thing of main concern here is the ability to design a material that 
would enable a high enough initial burst of the drug release, which would surpass the minimal 



inhibitory concentration for the given infective agent, such as a bacterial colony. If, on the other 
hand, the amount of the released drug is continuously lower than this critical level, it may result 
in developing antibiotic resistant organisms, rather than keeping their population under control, 
through such a controlled release of the antibiotic.  

By means of antibiotic-impregnated CAP nanoparticles, a local delivery of antibiotics 
would also be coupled to remineralization of the lost portion of bone. Such an approach would 
overcome difficulties that implantable antibiotic delivery systems currently face; namely, the 
need for the removal of the implant at the end of the treatment. CAP/HAP particles carrying 
gentamicin and vancomycin were thus shown not only to exhibit an antibiotic effect on the 
healed tissue, but to stimulate the growth of the new bone owing to the bioactivity of the carrier 
and its similarity to the natural composition of bone317. CAP particles are in this case also 
expected to be more effective than polymers (e.g., polycaprolactone)318 in view of the latter not 
being able to provide support for bone tissue reconstruction at the targeted space. Another 
antibiotic effective in treating osteomyellitis, recently injected within PLLA nanospheres coated 
with CAP319, is tigecycline, which possesses activity against both gram-positive and gram-
negative pathogens, binding to the 30S ribosomal subunit and inhibiting protein synthesis320. 
Cefuroxine was also impregnated within porous HAP/TCP and successfully used to treat 
osteomyellitis, with the implants inducing the highest concentration of the antibiotic in bone and 
serum 21 days after the implantation321. Amoxicillin, one of the most common antibiotics 
prescribed to children has also recently been injected into PLGA microspheres coated with 
HAP322, whereby the same research group also managed to encapsulate indomethacin, a 
hydrophobic drug, within HAP-coated liposomes based on 1,2-dimyristoyl-sn-glycero-3-
phosphate (DMPA) and 1,2-dimyristoyl-sn-glycero-3-phospliocholine (DMPC)323. Doxycycline, 
an antibiotic used to treat periodontitis, has also been encapsulated within HAP nanoparticles, 
exhibiting sustained and single or multiple stage release profiles depending on the Ca/P ratio324. 
Other compounds, such as vitamins325,326,327,328 or Coenzyme Q10 (i.e., ubiquinone, a lipophilic 
antioxidant)329, have been prepared using this method (Fig.12). Using CTAB as an additive, 
uniform hollow CAP nanospheres have recently been prepared with a potentially improved drug 
uptake efficiency330. Nanosized hollow ellipsoidal HAP/CaSiO3 composites with the improved 
drug loading capacity were also prepared in a multistage process involving a selective 
dissolution of the initially precipitated CaCO3 core331. CAP particles could be also coupled with 
stem cells332,333,334,335 or bone marrow mesenchymal stromal cells336, both of which are known to 
facilitate the regenerative therapy of connective and hard tissues. Various elements of 
extracellular matrix (ECM) could also be incorporated with the purpose of improving the 
biocompatibility and bioactivity of the particles or accelerating the osteoinductive response of 
the surrounding hard tissues337. Individual amino acids and their combinations have also been 
anchored on the surface of HAP nanorods338. Hydrophilic organic coatings, such as albumin, 
dextran or hydroxemethylmethacrylate could also be used to enhance biocompatibility of the 
particles339. With respect to regeneration of hard tissues, all of such systems could be applied for 
treating their loss occurring due to infection or even treat soft tissues such as pulp340 or 
cementum-gingiva-alveolar bone interface damaged by a periodontal disease in dentistry.   
 As CAP and bioactive glasses are still considered as compounds that the next generation 
of biomaterials will be based on341,342, synthesis of nanosized CAP particles coated with Bioglass 
or blended within nanophase composites343 would present another prospective research direction. 
Such a material could be used both as a filler of bone defects and an efficient drug delivery 
carrier owing to facile surface functionalization through the silanol groups. If the layers of 



bioactive glass are thin enough (a few atomic layers), it would predispose the particles for a 
relatively quick dissolution of the coating (bioactive glass has a significantly higher rate of 
resorption compared to CAP), right after the attached drug has fulfilled its role, after which the 
CAP core can act as a bone filling or biodegradable reminalization agent. In such a way, both the 
ideals of an efficient drug delivery and bioremineralization would be satisfied. Furthermore, by 
controlling the thickness of the coating (achievable through varying the control parameters of the 
synthesis), the time control over the dissolution of the bioactive glass and the consequent release 
of the drug could be possessed. Coating with silica glass is typically carried out via a hydrolysis 
of given alkoxides (i.e., tetraethyl orthosilicate (TEOS) in most cases) and localized 
polycondensation on the surface of the core particles344,345,346. LaSr-manganite particles were 
thus coated with silica347, whereas cholesterol platelets were coated using sodium silicate 
solution and a procedure involving a reaction with an ion-exchange resin348. A challenge would 
be to coat CAP particles with Au (metal-ceramic coatings are difficult to achieve owing to 
different thermal expansion coefficients between the two components among other factors), but 
if succeeded, such particles shelled with Au could be used for photothermal therapies and 
diagnostics, such as optical coherence tomography349. The absorption efficiency of Au is a few 
orders of magnitude higher than that of conventional photothermal dyes, and Au surfaces can be 
facilely functionalized with antibodies and other bioactive molecules. On the other hand, instead 
of being the core component of drug delivery nanoparticles, CAP phase can be coated around 
another phase. Such an approach was used to prepare CAP-coated PLLA microspheres with a 
sustained 30-day release profile of attached bovine serum albumin (BSA) in SBF compared to 
non-coated particles typified with an initial burst in the drug release350. An opposite approach, 
that is, co-precipitation of PLGA and a drug, tigecycline, in the presence of precursor HAP 
nanoparticles was recently implemented, resulting in HAP/PLGA/drug composite particles351. 
They turn out to be particularly appealing not only because of their biocompatible and 
biodegradable nature, but because HAP releases hydroxyl groups upon dissolution, whereas 
PLGA releases acidic products of degradation. In combination, the two components thus balance 
each other’s potentially harmful pH changes. Notice, however, that the higher the amorphous 
content in CAP/HAP particles, the less intensive the corresponding increase in pH is. A 
convenient circumstance is that such phases with a lesser number of hydroxyl groups in the 
stoichiometric formula dissolve faster than HAP. As a result, the slow dissolution of HAP in 
biological conditions does not necessarily produce pH changes that could not be buffered by the 
organism. To achieve this simultaneous dissolution of the polymer and mineral components and 
avoid the two-step drug release profile, dispersion of nanosized CAP particles within polymeric 
particles as matrices may have to be ensured instead of the classical core-shell model where the 
drug-containing polymer would thoroughly coat the CAP core. Another favorable feature of both 
HAP and PLLA/PLGA352 is their negatively charged surface under the physiological conditions, 
which naturally fosters the attachment of cells thereto.  

 



Fig.12. Uniform polylactide-co-glycolide spheres injected with ascorbic (left) and folic acid (right). The 
composition and size of the particles could be modified so as to optimize the release rate of the encapsulated model 
compound (middle). The same approach could be applied for the fabrication of drug-carrying CAP/HAP 
nanoparticles with controlled drug release rates. Reprinted with permission from Ref.353. 

 
For the theranostic purposes, particles need to satisfy the requirements for simultaneous 

imaging/diagnostics and therapeutic effect. For the imaging purposes, the particles could be 
doped with specific ions or compounds, which would enable their detection using an appropriate 
external device. Some of the methods for imaging include fluorescence imaging (in which case 
fluorescent probes need to be incorporated within the particles), MRI (in which case, doping the 
particles with magnetic ions is carried out), gammascintigraphy (in which case, doping the 
particles with heavy atoms such as 111In, 99mTc, Mn, and Gd is required354), X-ray computed 
tomography and ultrasonography. At a finer scale, one could perform molecular imaging, which 
is defined as visually representing, characterizing and quantifying (sub)cellular biological 
processes within the organism. These processes include gene expression, protein-protein 
interaction, signal transduction, cellular metabolism, and both intracellular and intercellular 
trafficking. For optical imaging, the particles are normally doped with organic fluorophores, such 
as Cascade Blue (dark blue), 10-(3-sulfopropyl) acridinium betaine (SAB; light blue), 
fluorescein (green), rhodamine WT (orange), and Cy3 amidite (magenta), which were all 
recently encapsulated within CAP nanoparticles355. However, CAP particles could be equally 
doped with Eu3+, Tb3+, Gd3+ or other lanthanides in order to be made fluorescent356,357. 
Nanocrystals actually offer the advantage of structurally integrating the fluorescent entities 
within the crystal lattice by doping, thereby transcending numerous drawbacks of using organic 
dyes, fluorescent proteins, and lanthanide chelates, such as broad spectrum profiles, low 
photobleaching thresholds, and poor photochemical stability358. The pathways of such 
nanoparticles were successively followed inside pancreatic cells359. Accumulation of DNA-
loaded CAP nanoparticles which also contained red-fluorescing tetramenthylrhodamine 
isothiocyanate (TRITC) BSA inside a cell and its nucleus was observed by fluorescence 
microscopy360. Combining CAP with semiconductor quantum dots361,362 at the particle level 
could also be used to enable monitoring of the route that the particles follow in the body.  

It has been evidenced that the addition of ions that substitute Ca2+ in HAP crystal lattice 
can induce a more favorable capturing of the carried biocomponent, such as DNA363. Evaluating 
the effect of additives, such as Mg2+, CO3

2-, K+ and Al3+, most of which are known to be present 
in biological apatite, may thus be useful. The effects of many external ions on precipitation of 
HAP have previously been established, and it is known, for example, that citrate, pyrophosphate 
and molybdate ions reduce the crystallinity of HAP, whereas Mg2+, Al3+ and Sn2+ at high 
concentrations inhibit the hydrolysis of the initially precipitated amorphous CAP phase364. At 
low concentrations, however, Mg2+, Al3+ and Zn2+ promote the formation of substituted β–TCP. 
MgO and SrO have been shown to suppress β– to α-TCP transition and also promote attachment, 
proliferation and differentiation of osteoblast cells365. Strontium is present in tiny concentrations 
in bone and is, like Si ions, supposed to play a role in early bone formation, whereby 0.01 % of 
the human body weight is amorphous silica. Similar to other ions, such as carbonate, sodium and 
magnesium, these two also occur as lattice substitutions at the atomic level. Quite rarely, as in 
the case of strontium-based toothpastes, strontium precipitates in form of Sr3(PO4)2 with SrCl2 
being the intermediate. In any case, the mechanism by which Si increases in vivo bioactivity is 
still unresolved. Mechanisms proposed to explain this effect can be divided to: a) passive, 
including the Si-induced effect of decreased apatite grain size, a change in the protein 



conformation on the biomaterial surface or modifications of the surface topography and therefore 
the cellular response; and b) active, referring to the release of Si ions, its cellular uptake and 
promotion of gene expression in the direction of an increased bioactivity366. In general, 
understanding the precise biological mechanisms with respect to implantation of HAP in the 
body is still required, which is why an enormous shift of interest towards looking at genetic 
expression pathways following the implementation of HAP and bioactive glasses is witnessed 
today367,368. There are ongoing efforts to follow the genetic expression pathways in osteoblast 
and fibroblast cell cultures and thus design the most optimal ionic composition of the 
implantable material, which would presumably lead to the so-called “third generation” of 
biomaterials369. In that sense, exploration of additives that may not even be present in the body 
and evaluating their bioactivity responses, may present a reasonable choice.  

Another interesting direction is doping CAP with magnetic ions, such as Co370,371 or 
Fe372,373, or even co-precipitation of magnetite374. There are indications that magnetic HAP and 
electrically polarized one (owing to OH groups in HAP crystal lattice) possess a more 
pronounced osteogenic response375,376. The structure and composition of HAP have been shown 
to be stable upon substitution with exogenous metallic ions in the lattice377,378. Such particles 
could be guided to the targeted area in the organism by means of an external magnetic field. 
They could be used either as contrast agents for MRI, for cell separation or as a heat mediator in 
hyperthermia therapies379. Magnetic HAP synthesized by co-precipitation in the presence of 
FeCl2, thereby partially substituting Ca2+ with Fe2+ in the resulting crystal lattice, was recently 
successfully applied in treating murine colon cancer by hyperthermia, following a subcutaneous 
injection of the particles380. Owing to their small sizes, the particles would be superparamagnetic 
and would thus resist agglomeration caused by magnetic dipole-dipole interactions outside of the 
external field381. Also, heavy metal atoms, such as 111In, 99mTc, Gd or Mn, loaded into the 
nanocarrier via a carrier-incorporated chelating moiety can lead to particles for gamma- or MR 
imaging applications. Hetero-epitaxial growth of magnetite on HAP resulted in 300 nm sized 
magnetic composite particles with saturation magnetization of 30 emu/g382. The particles showed 
an increased transfection of stem cells with the gene for glial cell line-derived neurotrophic 
factor in the magnetic field compared to the transfection efficiency reached in the absence of the 
external field. Superparamagnetic CAP composite nanospheres could also be applied for the 
blood detoxification. Functionalized with target-specific antitoxin receptors and let freely 
circulate within the bloodstream after simple intravenous injection, the particles would sequester 
the blood-borne toxins using their surface receptors. The blood is then circulated via a catheter 
through a portable high gradient magnetic separator device where the magnetic toxin complexes 
are retained and the detoxified blood is returned back to the bloodstream383. Unlike sole drugs, 
98 % of which cannot transverse the blood-brain barrier (BBB) nor penetrate the skin, some 
nanoparticles can384, which makes them attractive for acting as carriers for drugs that are to be 
delivered across the BBB and the epithelial junctions of the skin that normally impede the 
delivery of drugs to the desired target385.   

In fact, because the type and efficiency of the transport of nanoparticles across the 
cellular membrane largely depends on their size, developing synthesis methods for the size-
controlled fabrication of HAP nanoparticles is essential for fine-tuning their application as drug 
and gene delivery agents. The transport mechanism may also predispose the particles to exert a 
specific effect on the cell. Particles smaller than 20 nm typically either pass the cell membrane 
through the membrane channels or by following vesicular or caveloae-based endocytosis 
routes386. If the particle size fits the size of the active part of receptor molecules docked on the 



cell membrane, a receptor-induced transport with a possible synergetic effect on the cell may be 
triggered. A few studies have shown that nanoparticles of ~ 50 nm in size cross the cell 
membrane faster than those smaller than 15 nm or bigger than 200 nm on average, and that 
smaller is not necessarily the better when it comes to choosing the most optimal size for a given 
drug/gene delivery application387,388. In fact, different application purposes require different 
optimal particle sizes389. Whenever an external control of the particles in the body is to be 
established, a compromise needs to be made regarding their size, since particles that are too 
small would tend to difficultly oppose the direction of the bloodstream and would respond to the 
external field with a less intensive signal, whereas particles that are too big would be less 
movable owing to their tendency to get interlocked between macromolecular complexes, cells 
and tissues390.  

Surface modification by means of adding cell-binding peptides onto the surface or in the 
bulk of biomaterials has been used to attain control over cell-biomaterial interactions and 
promote a more efficient healing process upon the injection of the biomaterial in the body391. By 
the action of surface-functionalized nanoparticulate carriers, the drug can be locally focused 
within the diseased area, so that a controlled and extended on-site release, with lesser doses 
required, can be achieved, with a greater control over toxicity and bioavailability of the drug. As 
for the intracellular delivery, surface functionalization can be used to optimize the charge of the 
particles, keeping in mind that positively charged particles are endocytosed at a higher rate 
compared to negatively charged ones (as cell membrane is negatively charged due to the surface-
exposed phospholipids)392. Good efficiency of CAP nanoparticles carrying a photoactive dye 
against rabbit synoviocytes and murine macrophages was thus attributed to their positive charge 
achieved by means of functionalizing the particle surface with poly(ethyleneimine) (PEI)393. The 
most common peptide for biomimetic surface modification is Arg-Gly-Asp (RGD), a ubiquitous 
peptide present on ECM proteins and shown to promote cell adhesion in multiple cell types394. 
Specific targeting ligands, usually monoclonal antibodies, may be attached to the carrier surface, 
thus promoting a diagnostic molecular recognition and the immunocarrier character of the 
particles. PEG as a protecting polymer or BSA can be attached to the surface of the particles so 
as to increase the circulation time of the nanocarrier in the blood395,396. Such a strategy was 
employed by Abraxis Bioscience, Inc., to increase the uptake efficiency of the anticancer drug, 
paclitaxel, and prevent the side effects associated with using toxic solvents. Cell-penetrating 
peptides attached to the carrier surface would also allow for an enhanced uptake by the cells. 
CAP nanoparticles could also be functionalized397 or encapsulated398 with chitosan, a naturally 
derived polysaccharide, which is known to have apoptotic effects on tumor cells per se399,400,401,. 
A method for injecting doxorubicin, a cancer therapeutic chemical into degradable CAP non-
agglomerating particles with 20 – 40 nm in size, with the result of having the same efficacy but 
significantly less expressed side effects, has recently been reported402. Methotrexate, another 
anticancer drug, was also successfully loaded into 250 nm sized CAP particles prepared by 
reverse micelle technique403. CAP nanoparticles conjugated with cis-diamminedichloro-platinum 
(CDDP, cisplatin) were also prepared, exhibiting twice higher IC50 values when compared to the 
free drug in an in vitro cell proliferation assay using a human ovarian cancer cell line404. Folic 
acid with its high affinity for folate receptors that are often overexpressed in cancer cells presents 
another compound that may be added to CAP nanoparticle carriers405. Also, photosensitizers, 
such as 2-devinyl-2-(1-hexyloxyethyl)pyropheophorbide (HPPH), could be incorporated in or 
coated on the surface of CAP particles, which would thus render the particles capable of being 
applied in cancer photodynamic therapy406. Raman labels, such as basic fuchsin, or nanoscopic 



domains of silver or gold to initiate surface-enhanced Raman scattering (SERS) could also be 
attached to the core particles, which would make their antibody-conjugated versions detectable 
upon binding to cells or specific biomolecules by means of Raman spectroscopy407. Finally, all 
of these functional surface additives could be simultaneously applied in the role of emulsifiers, 
stabilizing the nanoparticulate suspensions and preventing agglomeration of the particles408. 

 
Fig.13. Precipitation of CAP in the presence of steric agents and other active molecules or particles (red dots), such 
as fluorescent probes, superparamagnetic entities or drugs, may lead to stable dispersions of medically functional 
CAP nanoparticles. The model for the attachment of nucleic acids onto the surface of these particles is shown in the 
middle, whereas different types of multilayered DNA-CAP composite particles prepared by the co-precipitation 
technique are shown on the right. Reprinted and adapted with permission from Ref. 409. 

 
Owing to the affinity of Ca2+ ions on the surface of CAP particles to the helical PO4

3- 
groups of DNA, HAP has been applied as an adsorbent in chromatography for separation of 
DNA410. As Ca2+ ions can interact with carboxylate residues on the protein surface, whereas 
PO4

3- functional groups can interact with basic protein residues, HAP has also been used for the 
separation of proteins411,412. Functionalizing the surface of HAP particles with polymers, 
peptides, proteins, cell-penetrating moieties, DNA or oligonucleotides can thus be facilely 
carried out (Fig.13). Simple co-precipitation procedures were reported for the synthesis of 
DNA/CAP composites, with the biocomponent either encapsulated or anchored on the surface413. 
DNA could be attached to the particle surface, thus enabling their use as cell transfection agents, 
i.e., non-viral vectors for the gene therapy414. The usage of CAP particles for this application 
dates back to the works of Graham et al. in 1973415, and is nowadays routinely used for in vitro 
transfection procedures. As far as the state-of-the-art is concerned, although non-viral delivery 
systems show a lesser efficiency compared to the viral ones, they are markedly safer. Producing 
particles that would possess transfection efficiencies comparable to those of viral carriers thus 
remains a challenge, particularly in view of the fact that FDA has not approved any gene therapy 
carriers yet416. However, DNA can also be injected within the particles, thus preventing its 
detachment in the blood stream and ensuring its secure intracellular delivery417. In addition, by 
sequential precipitation of CAP and adsorption of DNA, core-shell particles with multiple layers 
of therapeutic organic components separated by walls of CAP and thus released at different time 
points and rates could be prepared418. The same technique of layer-by-layer precipitation could 
be applied for producing other types of multilayered polymeric/peptide/CAP particles419. 
Functionally graded HAP coatings encapsulating a drug can also be synthesized to enable 
tunable time-dependent drug release profiles420. As for the gene transfection a delivery of DNA 
into the cell nucleus has to be ensured, antisense strategies using siRNA (gene silencing) require 
a simpler approach, as in this case it is sufficient to deliver siRNA into the cytoplasm421. To 
ensure a more effective size control and serum tolerability and, therefore, a more effective 



genetic knockdown with CAP nanoparticles as siRNA-carriers, they were used as components of 
hybrid micelles together with PEGylated polyanion block copolymers, such as PEG-b-
poly(aspartic acid) and PEG-b-poly(methacrylic acid)422. Also, attaching oligonucleotides to 
nanoparticles has been shown to increase the resistance of the DNA fragments with respect to 
enzymatic degradation423. Coating CAP particles with the protective layer of oligonucleotides in 
addition to conjugating other functional compounds thereto (adsorbed, covalently bound or 
entrapped in the crystal structure) is thus an interesting research direction to explore.   

Osteoinductive and cytotoxic behavior of CAP nanoparticles has been evaluated both on 
cell cultures and in vivo424,425,426,427, with the purpose of providing insights into their 
biocompatibility (biosafety as much as biofunctionality) characteristics. However, these tests 
have so far been proven as sufficient only to permit the usage of CAP nanoparticles as filler 
components in scaffolds implementable in reparation of hard tissues. For the purpose of applying 
these particles as drug delivery vehicles, significantly more extensive and qualitatively more 
complex evaluations need to be performed, particularly in view of the fact that toxicity of a 
compound can be different depending on size and/or morphology of the particulate form in 
which it is applied, and the fact that circulating nanoparticles can get into contact with practically 
any tissue in the organism, producing unforeseeable effects thereon. One report thus shows how 
polytetrafluoroethylene (PTFE) particles with ~20 nm in size are harmful when inhaled, whereas 
130 nm-sized particles with the same composition do not produce any toxic effects428. On the 
other hand, there are nanoparticulate compositions that are prone to agglomeration upon their 
intravenous administration, and are only in such form evidenced as damaging for the body429. 
Sometimes, also, it is only a specific window of particle sizes that produces a given, desired or 
undesired biological response, as it has, for example, recently been shown how 2 and 12 nm 
sized particles did not induce a specific biological response that 7 nm sized particles did430. As 
already noticed, a possible side effect of introducing extensive amounts of CAP into the body 
may be induced local atherosclerosis; hence, possible methods for assessing this effect include 
analyzing the cross-sections of arteries or looking at the deviations from the normal body weight 
gain in mice following administration of the drug delivery agent. Serum analyses can be used to 
follow bone metabolism (via levels of Ca2+, H2PO4

-/HPO4
2- and alkaline phosphatase), kidney 

function (via BUN-to-creatinine ratio), and nutrition (via albumin and total levels of protein). 
Although intracellular injection of CAP particles may pose concerns in terms of the possibly 
harmful increase in levels of Ca2+ in the cytoplasm, such concerns are significantly minimized 
during the extracellular drug administration. Also, following the injection of typically a few 
hundreds of milligrams per kg of the body weight, histological and weight analyses of the 
dissected vital organs as well as hematological analyses (haematocyte and hemoglobin content 
and thrombocyte count) are often performed to evaluate the possible pathological effects of the 
drug delivery procedure.  

Finally, the ideals of multifunctionality431 dictate using multiple structural and surface 
modifications of CAP nanoparticles mentioned hereby in parallel, and exploring their synergy. 
One example of such a multifunctional composite particle is shown in Fig.14. Composite 
nanoparticles composed of magnetite nanodomains interspersed within a polystyrene core, and 
coated with amine-functionalized quantum dots have recently been synthesized as a material for 
simultaneous fluorescent imaging and hyperthermia therapy432. Another type of particles based 
on BSA-stabilized manganese-doped magnetite nanoparticles comprising green fluorescence 
protein (GFP) and Arg-Gly-Asp peptide (known to bind specifically to αvβ3 integrin, which is 
expressed in tumor cells) bound to Cy5-dye-labeled thiolated siRNA (inhibiting the expression 



of GFP), for the purpose of simultaneous molecular imaging and gene silencing, was also 
recently produced433. Theranostic HAP nanocrystals doped with Eu3+ and Gd3+ were engineered 
to enable simultaneous contrast enhancement for three different imaging techniques (XRD, MRI 
and near-infrared fluorescence imaging) as well as to act as therapeutic agents by being 
conjugated with the cell-membrane receptor ligand folic acid and by having their surface 
aminized with a dendigraft polymer, PEI434. Also, particles comprising 100-nm-sized silica core 
and Au shell with finely dispersed 10-nm-sized particles of Fe3O4, functionalized with anti-
HER2 antibody with the purpose of specifically targeting epidermal growth factor receptors, 
were prepared and successfully applied, displaying an optical resonance peak, magnetic 
response, an intensive surface plasmon-enhanced scattering in targeted cells, and the ability to 
selectively destroy the penetrated cells depending on the frequency of the light source435. A 
similar approach may be performed relying on CAP as the core material. The first step in 
producing multifunctional composite CAP-based nanoparticles would be to establish convenient 
methods for fabrication of CAP nanoparticles with tunable structure and properties. 
Subsequently, the nanoparticles could be doped and surface functionalized with a wide array of 
atomic and molecular entities. To succeed in this, it is certain that inventing efficient and elegant 
methods of synthesis and conceiving innovative ideas on how to probe the fundamental 
understanding of the formation of complex composite and surface-functionalized nanoparticles 
relying on soft, bottom-up chemistry approaches, is essential, just as the availability of 
ultramodern imaging and other analytical techniques is. In other words, it is only a coordinated 
effort of soft, self-assembly, bottom-up synthetic techniques and top-down methods of 
manipulating the material structures at the fine scale that could yield desired results along this 
line of research.  

 
Fig.14. An example of a multifunctional drug delivery particle composed of CAP core surrounded by a polymeric 
shell in which magnetic domains are dispersed for the purpose of enabling the guidance of the particle in an external 
magnetic field and potentially producing localized heat under alternating magnetic field in hyperthermia or 
thermoblastic therapies. The external polymeric shell contains dispersed therapeutic agents, whereby its surface is 
covered by a targeting agent and PEG molecules so as to increase the circulation time of the carrier in the blood.  
 
Conclusion 
 
 After everything said, we can conclude that nanomedicine holds immense promises for 
the medical treatments of the future, whereby a research focused on multifunctional theranostic 
CAP nanoparticles capable of diagnosing the disease and being activated as a therapeutic at a 



chosen site, despite the fact that there is still a long way to go before the understanding of the 
chemical mechanisms of their formation is made complete, presents a prospective path for the 
development of this field that is still, as of today, in its embryonic stage. In order to be successful 
in these endeavors, the gap between life scientists and materials scientists sustained by different 
methods, terminologies and subjects of scrutiny existing on each one of the separate research 
“coasts”, has to be bridged. As of today, however, the fruitful reconciliation of these two 
scientific areas can be seen as nothing but enormously challenging. The other side is often hardly 
intelligible to most scientists, which fosters them to stick to their own fields and narrow their 
views into ever more specialized cognitive panoramas. Organic and biochemical entities often 
disobey facile analytical reproducibility and require different, oftentimes more pertinacious 
strategies, quite unlike more robust and macro-scale technologies implementable within 
materials science study concepts. Yet, the development of nanomedical methods and tools will 
crucially depend on the ability of natural scientists to stretch their curiosity to the other side and 
be open to communicate and form cross-disciplinary collaborations between the two. As in any 
other materials science “design” approach, a detailed understanding of the correlation between 
the material structure, properties and function is required for the development of CAP 
nanoparticles as viable drug and/or gene delivery vehicles. Hence, the basic material properties, 
such as particle size, morphology, specific surface area, polydispersity and composition, 
including control over them have to be correlated with their corresponding performance in the 
biomedical settings. With its strong physicochemical roots, materials science can fundamentally 
supplement the biomedical approach which is typically limited to investigating specific 
molecular recognition properties of biomolecules in elaborate statistical settings. With its 
engineering aspect, materials science can also provide a more reliable technological platform for 
biochemical studies. Life sciences can, on the other hand, provide the basis for the assessment of 
the real-life application potential of biomaterials designed in the lab. They can also enrich 
materials science with knowledge on soft matter and biochemical interactions that are critical for 
our ability to manipulate therewith in the design of complex multifunctional materials, such as 
the one that has been the topic of this review. This is all to say that to succeed in bringing 
CAP/HAP as advanced nanocarriers to the frontier of medicine will require a range of well 
coordinated interdisciplinary efforts. Bridging the gap between Materials Science and Life 
Science as two main contemporary research streams can be seen as a necessary precondition for 
satisfying this aim.  
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