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Abstract In this paper, we present a class of integer codes capable of cor-
recting burst asymmetric errors. The presented codes are constructed with
the help of a computer and have the potential to be used in various practical
systems, such as optical networks and VLSI memories. In order to evaluate
the performance of the proposed codes, the paper analyzes the probability of
erroneous decoding for different bit error rates. The presented codes are also
analyzed from a rate-efficiency point of view. The obtained results show that
for many data lengths they require less check-bits than optimal burst error
correcting codes.
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1 Introduction

Binary-oriented codes have been intensively studied in the literature for the
last 70 years. Unlike them, the codes over the ring of integers modulo m, Zm,
have been scarcely studied. The reason pertaining to this could be the weak
error correcting capabilities of these codes [11]. However, inspired by the work
of Blake [1], [2], Varshamov and Tenengolz [13], and Levenshtein and Vinck [4],
who constructed perfect (d, k)-codes capable of correcting single-peak shifts,
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the authors of [14] showed that the concept of integer coding can be very
useful in systems where the messages are represented by integers (e.g. coded
modulation and magnetic recording). This fact motivated the authors of [6]-
[10] to construct several classes of integer codes that are suitable for use in
computer-based systems.

However, none of these codes is able to correct burst asymmetric errors
(BAEs). These errors occur in all systems in which binary 1s represent the
presence of some particles or energy. One example of such systems is optical
networks without optical amplifiers. In these networks, photons (represented
by binary 1s) may fade or fail to be detected, but new photons cannot be gener-
ated. Hence, upon transmission, only asymmetric (1 → 0) errors may occur [5].
The situation is same with VLSI memories in which charges (represented by
binary 1s) may leak with time, but new charges cannot be added [11]. This
is the reason why the mentioned systems are often modeled by the Z-channel
with crossover probability ϵ (Fig. 1).

Fig. 1: Z-Channel
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Motivated by this fact, in this paper, we present a class of integer codes
capable of correcting BAEs up to length l. The presented codes are a general-
ization of codes from [10], which means that they do not have to be interleaved
in order to be able to correct all BAEs. Thanks to this, they have the potential
to be used in many practical systems, including those with short codewords
(e.g. VLSI circuits and memories).

The organisation of this paper is as follows: Section 2 deals with the con-
struction of integer codes capable of correcting all BAEs of length up to l. The
bit error rate (BER) and the probability of erroneous dcoding for these codes
are determined in Section 3. This section also compares the proposed codes
with other codes of same or similar properties, while Section 4 concludes the
paper.
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2 Construction of Codes

In this section, we discuss the construction of integer codes correcting BAEs
up to length l. We also illustrate these codes with a suitable example. We
begin with the following definition.

Definition 1 (Integer Codes) [14] For m,M,N ∈ N, pre defined H ∈
Zm

M×N and d ∈ ZM
m . Then, an integer code is defined by

{
a ∈ ZN

m : aHT =

d
}
, where H can be seen as the parity check matrix.

By considering N = k + 1,m = 2b − 1,M = 1 and d = 0 in Definition

1, a ((k + 1)b, kb) integer code is defined as

{
(B1B2 . . . BkCB) ∈ Zk+1

2b−1
|

(B1B2 . . . BkCB)

C1
C2
.
.

Ck
−1

 (mod 2b − 1) = 0

}
, where the Ci’s are coefficients

from the ring Z2b−1, the Bi’s are data bytes and the CB is the check-byte.
It is clear that each byte, including the check-byte, can be written as Bi =
(xb−1, xb−2, . . . , x0) = [xb−12

b−1 + xb−22
b−2 + · · ·+ x02

0] (mod 2b − 1).

Definition 2 An integer code that corrects all BAEs of length up to l is called
an integer BlAEC code.

2.1 Encoding Procedure

A codeword comprises of k b-bit data bytes and one b-bit check byte. Accord-
ingly, if c = B1B2 . . . BkCB is the sent codeword and r = B̄1B̄2 . . . B̄kC̄B the
received one corrupted by an error e such that e = c − r, then the syndrome
is given by

S(r) = [cHT − eHT ] (mod 2b − 1)

= [−eHT ] (mod 2b − 1)

= −
[
(B1B2 . . . BkCB)− (B̄1B̄2 . . . B̄kC̄B)

]
C1

C2

.

.

.
Ck

−1

 (mod 2b − 1)

= [CB̄ − C̄B ] (mod 2b − 1),

where, CB̄ = [C1B̄1+C2B̄2+ . . .+CkB̄k] (mod 2b−1). Keeping this in mind,
we give below the definitions of the corresponding syndrome sets.

Definition 3 [10] The syndrome set of all BAEs of length up to l corrupting
one b-bit byte is defined by

S1 =
k+1
∪
i=1

[
− Ci.ϵb,l

]
(mod 2b − 1), (1)

where ϵb,l = eb,1 ∪ eb,2 ∪ · · · ∪ eb,l and eb,t = 2r(1, 3, . . . , 2t − 1), 0 ≤ r ≤ b− t.
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Definition 4 The syndrome set of all BAEs up to length l corrupting two
adjacent b-bit bytes is defined by

S2 =
k
∪
i=1

[
CiPr + Ci+1Qs

]
(mod 2b − 1), (2)

where Ck+1 = −1, Pr = {−2r−1 + pr−22
r−2 + · · · + p0}, Qs = {qb−12

b−1 +
qb−22

b−2 + · · ·+ (−1)2b−s}, pi, qi ∈ {−1, 0}, 1 ≤ r, s < l and max{r + s} = l.

Using the above definitions, we can state the following theorems.

Theorem 1 A ((k+1)b, kb) integer BlAEC code can correct all BAEs up to
length l if there exist k mutually distinct coefficients Ci ∈ Z2b−1 \ {0, 1} such
that

1. | S1 |= (k + 1)[2l−1(b− l+ 2)− 1].

2. | S2 |= k
l∑

i=2

αi, where αi = (i− 1)2i−2.

3. S1 ∩ S2 = ϕ.

Proof Condition 1 has been proved in Theorem 1 of [10]. For Condition 2, we
follow the same technique as Condition 1. For a BAE of length 2 corrupting two
adjacent b-bit bytes, the syndrome element will be of the type CiP1+Ci+1Q1 =
Ci(−1) + Ci+1(−2b−1). From this it is obvious that α2 = 1. For a BAE of
length 3 corrupting two adjacent b-bit bytes, the syndrome elements are of
the type CiP1 +Ci+1Q2 and CiP2 +Ci+1Q1. The possibilities in this case are
Ci(−1) + Ci+1(qb−12

b−1 − 2b−2) and Ci(−21 + p0) + Ci+1(−2b−1). Hence, it
is clear that α3 = 2 × 2 = 4. Further, for a BAE of length 4, the syndrome
elements are of type Ci(−1)+Ci+1(qb−12

b−1+qb−22
b−2−2b−3), Ci(−2+p0)+

Ci+1(qb−12
b−1 − 2b−2) and Ci(−22 + p12

1 + p0) + Ci+1(−2b−1). From this it
is easy to conclude that α4 = 3× 22 = 12. Following this pattern, we observe
that the possibilities for syndrome elements corresponding to a BAE of length
l corrupting two adjacent b-bit bytes are CiP1 +Ci+1Ql−1, CiP2 +Ci+1Ql−2,
. . . , CiPl−1 + Ci+1Q1. Thus, the pattern of syndrome elements in this case
will be Ci(−1) + Ci+1(qb−12

b−1 + · · · + qb−l−12
b−l−1 − 2b−l), Ci(−2 + p0) +

Ci+1(qb−12
b−1 + · · ·+ qb−l−22

b−l−2 − 2b−l−1), . . . , Ci(−2b−l + pb−l+12
b−l+1 +

· · ·+ p0) + Ci+1(−2b−1) and αl = (l− 1)2l−2.
Taking account of the orders α1, α2, . . . , αl and k+ 1 distinct coefficients,

we conclude that | S2 |= k
l∑

i=2

αi.

Finally, Condition 3 ensures that the syndromes caused by BAEs corrupt-
ing one b-bit byte are different from those corrupting two adjacent b-bit bytes.
Hence, the codes satisfying the conditions 1 to 3 are ((k + 1)b, kb) integer
BlAEC codes.

⊓⊔

Theorem 2 Let ζb,l = S1 ∪ S2 be the set of syndromes for a ((k + 1)b, kb)

integer BlAEC code. Then | ζb,l |= (k + 1)[2l−1(b− l+ 2)− 1] + k
l∑

i=2

αi.
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Proof From Theorem 1, it is clear that | ζb,l |= (k+1)[2l−1(b−l+2)−1]+k
l∑

i=2

αi.

⊓⊔
Note: For a ((k+1)b, kb) integer BlAEC code, the sets −C1ϵb,l, −C2ϵb,l, . . . ,
−Ckϵb,l, −Ck+1ϵb,l in (1) and CiPr +Ci+1Qs for 1 ≤ i ≤ k in (2) are required
to be all mutually disjoint. The coefficients Ci (Table 1) can be obtained by
using a suitable computer program (the Python code we used can be found at
the following link:
https://docs.google.com/document/d/1GL01xI-9u5 e2RW4flZsIYbfwMyiE d/
edit?usp=sharing&ouid=111601884470217455043&rtpof=true&sd=true).

Table 1: The coefficients for some ((k + 1)b, kb) integer BlAEC codes

b l Coefficients
8 3 29
9 2 7, 11, 13, 23, 31, 37, 55, 61, 63, 103, 117, 119, 125
9 3 2, 19, 93
10 2 5, 7, 9, 29, 35, 41, 49, 53, 61, 63, 71, 73, 79, 89, 95, 115, 125, 127,

149, 205
10 3 2, 25, 101, 239
10 4 2, 53
11 4 19, 21, 311
12 3 2, 9, 29, 61, 97, 127, 159, 199, 245, 249, 251, 281, 447, 615, 669,

671
12 4 37, 77, 211
13 4 2, 31, 159, 269, 319, 463, 507, 675, 921, 2811
14 4 25,37, 143, 157, 269, 509, 739, 805, 829, 1627, 2495, 2797, 3581,

3949, 5983
15 4 19, 23, 41, 67, 103, 113, 131, 409, 509, 563, 599, 703, 725, 903, 1145,

1301, 1415, 1587, 1683, 1745, 1979, 2613, 3383, 4709, 6015, 6127,
6133, 7093, 7415, 7807, 7925

16 3 2, 11, 43, 61, 67, 79, 89, 101, 105, 107, 113, 117, 121, 127, 131, 139,
143, 149, 151, 153, 157, 163, 167, 169, 179, 181, 187, 191, 193, 197,
199, 207

16 4 47, 59, 61, 113, 121, 127, 169, 199, 251, 271, 323, 331, 383, 431, 437,
449, 493, 509, 551, 557, 563, 575, 577, 593, 609, 629, 647, 661, 683,
697, 701, 713

18 4 43, 71, 97, 107, 131, 151, 163, 173, 179, 181, 191, 227, 241, 269, 271,
277, 281, 283, 307, 311, 317, 323, 331, 337, 347, 349, 353, 357, 359,
361, 367, 373

20 4 31, 81, 113, 149, 167, 179, 211, 223, 227, 233, 241, 245, 257, 263, 277,
281, 283, 289, 293, 307, 311, 313, 317, 323, 331, 337, 347, 349, 353,
357, 359, 361

25 4 23, 43, 131, 137, 149, 167, 173, 197, 199, 233, 241, 269, 271, 277,
281, 283, 289, 293, 307, 311, 317, 323, 331, 337, 347, 349, 353, 357,
359, 361, 367, 373

https://docs.google.com/document/d/1GL01xI-9u5_e2RW4flZsIYbfwMyiE__d/edit?usp=sharing&ouid=111601884470217455043&rtpof=true&sd=true
https://docs.google.com/document/d/1GL01xI-9u5_e2RW4flZsIYbfwMyiE__d/edit?usp=sharing&ouid=111601884470217455043&rtpof=true&sd=true
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32 3 2, 19, 47, 61, 73, 97, 99, 103, 109, 117, 121, 127, 131, 137, 139,
143, 149, 151, 153, 157, 163, 167, 169, 171, 173, 179, 181, 187, 191,
193, 197, 199

32 4 31, 81, 113, 149, 167, 179, 211, 223, 227, 233, 241, 245, 257, 263,
269, 271, 277, 281, 283, 289, 293, 307, 311, 313, 317, 323, 331, 337,
347, 349, 353, 357

2.2 Decoding Procedure

If the value of the syndrome S is different from zero, the decoder will lookup
the syndrome table (ST). It always has |ζb,l| entries (Theorem 2) and can be
generated by substituting the values of l, b and Ci into (1)-(2). The purpose
of each entry is to describe the relationship between the nonzero syndrome
(element of the set ζb,l), error locations (i, i + 1) and error vectors (e1, e2)
(Fig. 2). In order to able to correct BAEs, the decoder must find the entry

Fig. 2: Bit-width of one ST entry

Element of Error Error Error Error
ζb,l location (i) value (e1) location (i+ 1) value (e2)

←− b −→ ←− ⌈log2(k + 1)⌉ −→ ←− b −→ ←− ⌈log2(k + 1)⌉ −→ ←− b −→

with the first b bits as that of the syndrome S. If the ST is sorted in increasing
order (according to the elements of ζb,l), this task will be completed after ηT,L

table lookups (1 ≤ ηTL ≤ ⌊log2 | ζb,l |⌋ + 2)) [10]. In the next step, using the
error correction data, the decoder will perform one of the following operations:

– For BAEs of length up to l corrupting the check byte:

CB = [C̄B + e1] (mod 2b − 1), e1 ∈ ϵb,l; (3)

– For BAEs of length up to l corrupting the ith data byte (1 ≤ i ≤ k):

Bi = [B̄i + e1] (mod 2b − 1), e1 ∈ ϵb,l; (4)

– For BAEs of length up to l corrupting the ith and (i + 1)th data byte
(1 ≤ i ≤ k − 1):

Bi = [B̄i + e1] (mod 2b − 1), e1 ∈ ϵb,l, −e1 ∈ Pr; (5)

Bi+1 = [B̄i+1 + e2] (mod 2b − 1), e2 ∈ ϵb,l, −e2 ∈ Qs;

– For BAEs of length up to l corrupting the kth data byte and the check
byte:

Bk = [B̄k + e1] (mod 2b − 1), e1 ∈ ϵb,l, −e1 ∈ Pr; (6)

CB = [C̄B + e2] (mod 2b − 1), e2 ∈ ϵb,l, −e2 ∈ Qs;
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To make the above procedure more understandable, we will illustrate it on the
example of the (48, 40) B2AEC code.

Example 1 Let b = 8, l = 2 with C1 = 5, C2 = 7, C3 = 9, C4 = 25, C5 = 29
and C6 = −1. According to Theorem 2, the ST will have | ζ8,2 |= 95 entries
(Table 2). Now, suppose we want to transmit 40 data bits,
11011011 00110101 10100111 10101010 01010011. In that case, the value of
the check byte will be equal to CB = 191 = 10111111.

Case 1 (BAE corrupting one data byte): Assume that the decoder receives
the sequence 11000011 00110101 10100111 10101010 01010011 10111111. On
the basis of the value of the syndrome, S = [71 − 191] (mod 255) = 135 =
−5 × 24 (mod 255) = −5 × [24 + 23] (mod 255). The decoder will conclude
that the error has corrupted the first data byte (Table 2). Hence, the corrected
value of this byte will be B1 = [195 + 24] (mod 255) = 219 = 11011011.

Case 2 (BAE corrupting the check byte): Suppose the decoder receives the se-
quence 11011011 00110101 10100111 10101010 01010011 10110011. Based on
the value of the syndrome, S = [191 − 179] (mod 255) = 12 = 22 + 23. The
decoder will conclude that the the check-byte is received in error (Table 2).
After the error correction, its value will be CB = [179 + 12] (mod 255) =
191 = 10111111.

Case 3 (BAE corrupting two data bytes): Assume that the decoder receives
the sequence 11011011 00110101 10100110 00101010 01010011 10111111. On
the basis of the value of the syndrome, S = [42 − 191] (mod 255) = 106 =
[9(−1) + 25(−128)] (mod 255). The decoder will conclude that the error has
corrupted the third and fourth data byte (Table 2). Hence, the corrected val-
ues of these bytes will be B3 = [166 + 1] (mod 255) = 167 = 10100111 and
B4 = [42 + 128] (mod 255) = 170 = 10101010.

Case 4 (BAE corrupting the last data byte and check byte): Suppose that
the decoder receives the sequence
11011011 00110101 10100111 10101010 01010010 00111111. Based on the value
of the syndrome, S = [162− 63] (mod 255) = 99 = [29(−1)+128] (mod 255).
The decoder will conclude that the last data byte and check-byte are received
in error (Table 2). After the error correction, their values will be B5 = [82+1]
(mod 255) = 83 = 01010011 and CB = [63 + 128] (mod 255) = 191 =
10111111.

Table 2: The ST for the (48, 40) B2AEC code

Sl.No. Syndrome (ζb,l) Error Loc. Error (e1) Error Loc. Error (e2)
1 1 6 1 0 0
2 2 6 2 0 0
3 3 6 3 0 0
4 4 6 4 0 0
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5 6 6 6 0 0
6 8 6 8 0 0
7 12 6 12 0 0
8 15 1 48 0 0
9 16 6 16 0 0
10 21 5 96 0 0
11 23 5 8 0 0
12 24 6 24 0 0
13 30 1 96 0 0
14 31 2 32 0 0
15 32 6 32 0 0
16 39 3 24 0 0
17 42 5 192 0 0
18 45 4 192 0 0
19 46 5 16 0 0
20 48 6 48 0 0
21 55 4 8 0 0
22 57 3 192 0 0
23 60 1 192 0 0
24 62 2 64 0 0
25 64 6 64 0 0
26 69 5 24 0 0
27 75 4 48 0 0
28 78 3 48 0 0
29 81 5 6 0 0
30 87 2 24 0 0
31 88 4 1 5 128
32 92 5 32 0 0
33 93 2 96 0 0
34 95 1 32 0 0
35 96 6 96 0 0
36 99 5 1 6 128
37 105 4 6 0 0
38 106 3 1 4 128
39 110 4 16 0 0
40 111 3 16 0 0
41 113 5 128 0 0
42 115 4 128 0 0
43 116 2 1 3 128
44 119 1 1 2 128
45 123 3 120 0 0
46 124 2 128 0 0
47 125 1 128 0 0
48 128 6 128 0 0
49 135 1 24 0 0
50 138 5 48 0 0



Integer codes capable of correcting burst asymmetric errors 9

51 139 5 4 0 0
52 143 2 16 0 0
53 147 3 12 0 0
54 150 4 96 0 0
55 155 4 4 0 0
56 156 3 96 0 0
57 162 5 12 0 0
58 165 4 24 0 0
59 168 5 3 0 0
60 171 2 12 0 0
61 174 2 48 0 0
62 175 1 16 0 0
63 180 4 3 0 0
64 183 3 8 0 0
65 184 5 64 0 0
66 185 4 64 0 0
67 186 2 192 0 0
68 189 3 64 0 0
69 190 1 64 0 0
70 192 6 192 0 0
71 195 1 12 0 0
72 197 5 2 0 0
73 199 2 8 0 0
74 201 3 6 0 0
75 205 4 2 0 0
76 210 4 12 0 0
77 213 2 6 0 0
78 215 1 8 0 0
79 219 3 4 0 0
80 220 4 32 0 0
81 222 3 32 0 0
82 225 1 6 0 0
83 226 5 1 0 0
84 227 2 4 0 0
85 228 3 3 0 0
86 230 4 1 0 0
87 234 2 3 0 0
88 235 1 4 0 0
89 237 3 2 0 0
90 240 1 3 0 0
91 241 2 2 0 0
92 245 1 2 0 0
93 246 3 1 0 0
94 248 2 1 0 0
95 250 1 1 0 0
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3 Evaluation and Comparisons

In this section, we will first analyze the probability of erroneous decoding for
various BERs. After that, we will analyze the efficiency of the proposed codes
in terms of redundancy.

3.1 The BER and Error Probability

The BER is the ratio of the total number of bits received in error to the total
number of bits transmitted. The errors discussed here vary from 1 to l bits.
So, for determining the BER, we shall consider the average.

Theorem 3 The BER for a ((k + 1)b, kb) integer BlAEC code is given by

1

l(k + 1)b

[ l2 + 5l− 2

4

]
.

Proof For a BAE of length 1, 2, 3, and 4, BER of a ((k+1)b, kb) integer BlAEC
code will be 1

(k+1)b ,
2

(k+1)b ,
2+3

2(k+1)b , and
2+3+4
3(k+1)b respectively. Continuing this,

for a burst of length l, BER will be 2+3+...+l
(l−1)(k+1)b . Thus BER for the proposed

code will be

1

l(k + 1)b

[
1 + 2 +

2 + 3

2
+ . . .+

2 + 3 + 4 + . . .+ l

l− 1

]
=

1

l(k + 1)b

[
1 +

l∑
j=2

j∑
i=2

i

j − 1

]

=
1

l(k + 1)b

[
1 +

l∑
j=2

(
2

j − 1
+

3

j − 1
+ . . .+

j

j − 1
)
]

=
1

l(k + 1)b

[
1 +

l∑
j=2

1

j − 1
(2 + 3 + . . .+ j)

]

=
1

l(k + 1)b

[
1 +

l∑
j=2

2 + j

2

]

=
1

l(k + 1)b

[
1 +

1

2

l∑
j=2

2 +
1

2

l∑
j=2

j
]

=
1

l(k + 1)b

[4l+ (l− 1)(l+ 2)

4

]
=

1

l(k + 1)b

[ l2 + 5l− 2

4

]
.

⊓⊔
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Theorem 4 For transition probability ϵ of the occurrence 1 → 0, the probabil-
ity of erroneous decoding Pd(AB) for a ((k+1)b, kb) integer BlAEC code will

be (k+1)bϵ1(1−ϵ)(k+1)b−1+ϵ2(1−ϵ)(k+1)b−2

[((
1

1−ϵ

)l−1

− 1

)(
1−ϵ
ϵ

) (
(k+1)b

+
(
1−ϵ
ϵ

) )
− (l− 1)

(
1−ϵ
ϵ

) (
1

1−ϵ

)l−1
]
.

Proof For l = 1, as discussed earlier, 1 bit will be erroneous and the re-
maining (k + 1)b − 1 bits will be non-erroneous. Thus the probability will
be (k + 1)b[ϵ1(1 − ϵ)(k+1)−1]. Similarly for l = 2, the probability will be
((k+1)b−1)[ϵ2(1−ϵ)(k+1)b−2]. For l = 3, there are two BAEs having non-zero
components. These errors may occur at (k+1)b−2 different positions. Hence,
the probability will be ((k+1)b−2)[

(
1
0

)
ϵ2(1−ϵ)(k+1)b−2+

(
1
1

)
ϵ3(1−ϵ)(k+1)b−3].

Continuing this, for (k+ 1)b− l+ 1 number of positions for BAEs of length l,

we have the probability equal to ((k+1)b− l+1)[
l−2∑
i=0

(
l−2
i

)
ϵi+2(1−ϵ)(k+1)b−i−2].

Finally by adding up the probabilities up to length l, we get

Pd(AB) = (k+1)bϵ1(1−ϵ)(k+1)b−1+((k+1)b−1)
0∑

i=0

(
0
i

)
ϵi+2(1−ϵ)(k+1)b−i−2+

((k+1)b−2)
1∑

i=0

(
1
i

)
ϵi+2(1−ϵ)(k+1)b−i−2+ . . .+((k+1)b− l+1)

l−2∑
i=0

(
l−2
i

)
ϵi+2(1−

ϵ)(k+1)b−i−2

= (k + 1)bϵ1(1− ϵ)(k+1)b−1 +
l−1∑
j=1

j−1∑
i=0

((k + 1)b− j)
(
j−1
i

)
ϵi+2(1− ϵ)(k+1)b−i−2

= (k+1)bϵ1(1−ϵ)(k+1)b−1+ϵ2(1−ϵ)(k+1)b−2
l−1∑
j=1

j−1∑
i=0

((k+1)b−j)

[(
j−1
i

)
( ϵ
1−ϵ )

i

]
= (k + 1)bϵ1(1− ϵ)(k+1)b−1 + ϵ2(1− ϵ)(k+1)b−2

l−1∑
j=1

((k + 1)b− j)
(

1
1−ϵ

)j−1

= (k+1)bϵ1(1−ϵ)(k+1)b−1+ϵ2(1−ϵ)(k+1)b−2

[((
1

1−ϵ

)l−1

− 1

)(
1−ϵ
ϵ

) (
(k+1)b+(

1−ϵ
ϵ

) )
− (l− 1)

(
1−ϵ
ϵ

) (
1

1−ϵ

)l−1
]
.

⊓⊔
A few graphs in Fig. 3 show the changes in the BER and the Pd(AB) for some
integer BlAEC codes. We notice that, in all cases, the BER and the Pd(AB)
decrease with increasing code rate. In other words, the higher the value of k,
the lower the BER and the Pd(AB). We also observe that as the code rate
increases, the Pd(AB) decreases much faster than the BER.

3.2 Comparisons

In addition to having low probability of incorrect decoding, the proposed codes
are very efficient in terms of redundancy. This conclusion follows from the
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Fig. 3: The dependence of the BER and the Pd(AB) on the code rate of integer
BlAEC codes (ϵ = 0.1)
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(d) B3AEC with b = 32
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results of comparing the proposed codes with other BAE correcting codes
[10], [12]. Namely, from Table 3 we see that, for the values of l = 2, 3, 4, the
proposed codes use up to three check bits less than Saitoh-Imai codes [12]. Of
course, our codes cannot be more rate-efficient than those from [10], but in
turn they correct all BAEs (regardless of their position).

Table 3: Check-bit lengths of various codes correcting BAEs

Data word
Proposed Codes from Codes from

length (bits)
codes [12] [10]

l = 2 l = 3 l = 4 l = 2 l = 3 l = 4 l = 2 l = 3 l = 4
K = 128 10 12 13 12 13 14 9 11 12
K = 256 11 13 15 13 14 15 10 11 13
K = 512 12 14 16 15 16 17 11 13 14
K = 1024 13 15 17 16 17 18 12 13 15
K = 2048 14 16 18 17 18 19 13 14 16
K = 4096 15 17 19 18 19 20 14 15 17

Another evidence that confirms the rate-efficiency of the proposed codes is
the Campopiano upper bound for (N,K) linear burst error correcting (BEC)
codes [3]. This bound is, in the general case, given by qN−K > q2(l−1)[(q −
1)(N − 2l+1)+1], where q is the field size. By taking q = 2, the upper bound
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reduces to 2N−K > 22(l−1)[N − 2l + 2]. Using this inequality, it is easy to
show that, in many cases, the proposed codes use less check-bits than the best
possible linear BEC codes (Table 4).

Table 4: Number of check-bits for the proposed and the best possible linear
BEC codes

Codeword l Best possible Proposed codes
length (bits) linear BEC codes

N = 16 3 ≥ 8 8
N = 30 4 > 10 10
N = 36 3 > 9 9
N = 44 4 > 11 11
N = 143 4 > 13 13
N = 204 3 ≥ 12 12
N = 528 4 ≥ 16 16

Besides this, it should be noted that the STs for the proposed codes occupy
less memory than those used by linear BEC codes. In particular, in Section 2
we have seen that one ST entry is 3b + 2⌈log2(k + 1)⌉ bits wide (Fig. 2). On
the other hand, one ST entry for linear BEC codes has 2b+ kb bits. From this
it is easy to prove that the inequality 2⌈log2(k + 1)⌉ ≤ k(b − 1) holds for all
b ≥ 3 (note that both codes exist only if l < b

2 ).

4 Conclusion

In this paper, we have presented a class of integer codes capable of correcting
asymmetric burst errors. We have shown that the presented codes are very
efficient in terms of redundancy. More precisely, it has been shown that they
are more rate-efficient not only than their linear counterparts, but also than
the optimal burst error correcting codes. In addition, the proposed codes use
operations that are supported by all processors, which makes them attractive
for use in systems that display asymmetric errors. The best-known examples
of such systems are optical networks and VLSI memories.
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