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ON HYPERCYCLICITY AND SUPERCYCLICITY OF STRONGLY
CONTINUOUS SEMIGROUPS INDUCED BY SEMIFLOWS. DISJOINT

HYPERCYCLIC SEMIGROUPS

MARKO KOSTIĆ

(Presented at the 7th Meeting, held on October 25, 2019)

A b s t r a c t. We enquire into the basic structural properties of positively supercyclic

strongly continuous semigroups induced by locally Lipschitz continuous semiflows in the set-

ting of weighted Lp
and C0-type spaces. We also introduce and investigate disjoint hyper-

cyclic semigroups whose index set is an appropriate sector of the complex plane. Several

illustrative examples are also provided in order to justify our analysis.

AMS Mathematics Subject Classification (2020): 37D45, 47D03, 47D06, 47A16.
Key Words: hypercyclic semigroups, disjoint hypercyclic semigroups, supercyclic semi-

groups, semiflows.

1. Introduction and preliminaries

Let α ∈ (0, π2 ], δ > 0 and I ∕= ∅. Define ∆(α) := {reiθ : r ≥ 0, θ ∈ [−α,α]}
and suppose ∆ ∈ {[0,∞), R, C} or ∆ = ∆(α) for an appropriate α ∈ (0, π2 ].
Further on, put ∆δ := {z ∈ ∆ : |z| ≤ δ}.

∗
This research was supported by grant 174024 of Ministry of Science and Technological Devel-

opment, Republic of Serbia.



2 M. Kostić

Suppose that X is an infinite-dimensional separable Fréchet space over the field
K ∈ {R, C}. Denote by L(X) the space of all bounded linear operators from X into
X and by R(T ) the range of an operator T ∈ L(X). It is said that an operator family
(S(τ))τ∈I (S(τ) ∈ L(X), τ ∈ I) is:

(i) hypercyclic, if there exists x ∈ X whose orbit {S(τ)x : τ ∈ I} is dense in X,

(ii) topologically transitive, if for every open non-empty subsets U, V of X, there
exists τ ∈ I such that S(τ)U ∩ V ∕= ∅,

(iii) supercyclic, if there exists x ∈ X such that its projective orbit {cS(τ)x : c ∈
K, τ ∈ I} is dense in X,

(iv) positively supercyclic, if there exists x ∈ X such that its positive projective

orbit {cS(τ)x : c ∈ (0,∞), τ ∈ I} is dense in X.

An operator family (T (t))t∈∆ is said to be a strongly continuous semigroup if:

(i) T (0) = I,

(ii) T (t+ s) = T (t)T (s), t, s ∈ ∆ and

(iii) the mapping t )→ T (t)x, t ∈ ∆ is continuous for every fixed x ∈ X.

The first systematic exposition of hypercyclic strongly continuous semigroups
in Banach spaces was presented by W. Desch, W. Schappacher and G. F. Webb in
[10] while the notion of hypercyclicity and chaoticity of strongly continuous transla-
tion semigroups whose index set is an appropriate sector of the complex plane was
introduced by J. A. Conejero and A. Peris in [7]–[8]. We also refer the reader to
[2], [15]–[19] and [23]. In [15]–[16], T. Kalmes has recently analyzed the hyper-
cyclicity of strongly continuous semigroups induced by semiflows. The underlying
Banach space in his analysis is chosen to be the space Lp(X,µ,K), resp. C0,ρ,K(X),
where X is a locally compact, σ-compact Hausdorff space, p ∈ [1,∞) and µ is a
locally finite Borel measure on X, resp. X is a locally compact, Hausdorff space and
ρ : X → (0,∞) is an upper semicontinuous function. For the purpose of research of
strongly continuous semigroups induced by non-differentiable locally Lipschitz con-
tinuous semiflows (cf. Example 2.1 given below), we primarily deal with the space
Lp
ρ1(Ω,K), where Ω is an open non-empty subset of Rn, ρ1 : Ω → (0,∞) is a locally

integrable function, mn is the Lebesgue measure in Rn and the norm of an element
f ∈ Lp

ρ1(Ω,K) is given by ||f ||p := (
!
Ω |f(·)|pρ1(·) dmn)

1/p. Further on, let us
recall that the space C0,ρ(X,K) consists of all continuous functions f : X → K
satisfying that, for every ' > 0, {x ∈ X : |f(x)|ρ(x) ≥ '} is a compact subset
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of X; equipped with the norm ||f || := supx∈X |f(x)|ρ(x), C0,ρ(X,K) becomes a
Banach space. Put, by common consent, supx∈∅ ρ(x) := 0 and denote by Cc(X,K)
the space of all continuous functions f : X → K whose support is a compact subset
of X. Then Cc(X,K) is dense in Lp(X,µ,K), and certainly, Cc(X,K) is dense in
C0,ρ(X,K), too (cf. [20, Section 13]). Let C(Ω,K) be the K-vector space consisting
of all continuous functions from Ω into K. We equip C(Ω,K) with its usual Fréchet
topology. In the sequel, it will not be confusing to write Lp

ρ1(Ω), C0,ρ(X), Cc(Ω),
and m(·), respectively, instead of Lp

ρ1(Ω,K), C0,ρ(X,K), Cc(Ω,K), and mn(·).
In Theorem 2.4, we focus our attention towards the study of positive supercyclic-

ity of strongly continuous semigroups induced by semiflows and continue, in such a
way, the research of M. Matsui, M. Yamada and F. Takeo [19]; the full importance
of positive supercyclicity of strongly continuous semigroups is vividly exhibited in
Example 2.2.

On the other hand, disjointness for finitely many operators has been introduced
by L. Bernal-Gonzáles [3] and J. Bès, A. Peris [4]. The main objective in Section 3
is to extend the notion of disjoint hypercyclicity to strongly continuous semigroups
whose index set is an appropriate sector of the complex plane. In this paper, we
establish sufficient conditions for d-hypercyclicity of strongly continuous semigroups
on the Fréchet space C(Ω) and on a class of weighted function spaces. The concrete
construction of d-hypercyclic semigroups induced by semiflows, obtained by means
of Theorem 3.1 and Theorem 3.2 given below, is the main purpose of this section.

Before we move ourselves to the next section, we feel duty bound to say that this
paper has been finally rejected in another mathematical journal after a rather long
peer-review process started from 2008 (the author would like to express his frank
gratitude to the anonymous referee for many useful hints and suggestions). During
the peer-review process, the obtained results were published in my second research
monograph [17] (2015) and later expanded in a joint research studies with C.-C.
Chen, S. Pilipović, D. Velinov [6] (2018) and V. Fedorov [12] (2018).

2. Hypercyclic and supercyclic semigroups induced by semiflows

Definition 2.1. Suppose n ∈ N and Ω is an open non-empty subset of Rn. A
continuous mapping ϕ : ∆× Ω → Ω is called a semiflow if ϕ(0, x) = x, x ∈ Ω,

ϕ(t+ s, x) = ϕ(t,ϕ(s, x)), t, s ∈ ∆, x ∈ Ω

and

x )→ ϕ(t, x) is injective for all t ∈ ∆.
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Designate by ϕ(t, ·)−1 the inverse mapping of ϕ(t, ·), i.e.,

y = ϕ(t, x)−1 if and only if x = ϕ(t, y), t ∈ ∆.

The following recollection of well known results from real analysis and measure
theory will be helpful in our further work.

Theorem 2.1. Suppose k, n ∈ N and Ω is an open non-empty subset of Rn.

(i) (Brouwer’s theorem, [9]) Suppose that the mapping f : Ω → Rn
is continuous

and injective. Then f(Ω) is an open subset of Rn.

(ii) (Rademacher’s theorem, [5], [11]) Suppose f : Ω → Rk
is a locally Lipschitz

continuous function. Then f(·) is differentiable at almost every point in Ω.

(iii) (The change of variables in Lebesgue’s integral, [14], [21]) Suppose f : Ω →
Rn

is locally Lipschitz continuous and injective. Then for every measurable

subset E of Ω, f(E) is a measurable subset of Rn. Suppose, further, that

g : f(Ω) → R is a measurable function and that the function x )→ g(x) is

integrable on f(E). Then the function x )→ g(f(x))| detDf(x)| is integrable

on E and the following formula holds:

"

f(E)
g(x) dx =

"

E
g(f(x))| detDf(x)| dx,

where Df(·) denotes the Jacobian of the mapping f(·), which exists for a.e.

x ∈ Ω.

(iv) ([18], [21]) Suppose that the mapping f : Ω → Rn
is locally Lipschitz contin-

uous. Then for every measurable set E ⊂ Ω, we have that m(E) = 0 implies

m(f(E)) = 0.

Given a number t ∈ ∆, a semiflow ϕ : ∆ × Ω → Ω and a function f : Ω → K,
define Tϕ(t)f : Ω → K by (Tϕ(t)f)(x) := f(ϕ(t, x)), x ∈ Ω. Then Tϕ(0)f = f,
Tϕ(t)Tϕ(s)f = Tϕ(s)Tϕ(t)f = Tϕ(t + s)f, t, s ∈ ∆ and Brouwer’s theorem im-
plies Cc(Ω) ⊂ Tϕ(t)Cc(Ω). We refer the reader to [16, Theorem 2.1], resp. [16,
Theorem 2.2], for the necessary and sufficient conditions stating when the composi-
tion operator Tϕ(t) : L

p
ρ1(Ω) → Lp

ρ1(Ω), resp. Tϕ(t) : C0,ρ(Ω) → C0,ρ(Ω), is well
defined and continuous. In order to see when the semigroup (Tϕ(t))t∈∆ is strongly
continuous in Lp

ρ1(Ω), resp. C0,ρ(Ω), we need the following auxiliary lemma which
is inspired by [16, Proposition 3.2].
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Lemma 2.1. Suppose ϕ : ∆×Ω → Ω is a semiflow. Then for every compact set

K ⊂ Ω and for every δ > 0 with K +B(0, δ) ⊂ Ω, there exists n ∈ N such that:

K ∩ ϕ(t, (Ω \ (K +B(0, δ)))) = ∅ for all t ∈ ∆1/n.

Herein B(0, δ) = {x ∈ Rn : |x| ≤ δ} and K + B(0, δ) = {x + y : x ∈ K, y ∈
B(0, δ)}.

PROOF. We will sketch the proof only in the non-trivial case ∆ = ∆(α), where
α ∈ (0,π/2). Suppose to the contrary that for every n ∈ N there exist tn ∈ ∆1/n

and xn ∈ Ω \ (K + B(0, δ)) such that yn = ϕ(tn, xn) ∈ K. The continuity of
ϕ(·, ·) implies that there exist t̃1 ∈ (∆1)

◦ and x1 ∈ Ω \ (K + B(0, δ)) such that
ϕ(t̃1, x1) ∈ K +B(0, δ/2). Put x̃1 := x1 and choose a natural number n1 ≥ 2 such
that t̃1 −∆1/n1

∈ ∆◦. Apply again the continuity of ϕ(·, ·) in order to conclude that
there exists t′n1

∈ (∆1/n1
)◦ such that ϕ(t′n1

, xn1) ∈ K+B(0, δ/2). Put t̃2 := t′n1
and

x̃2 := xn1 . Then t̃2 ∈ (∆1/2)
◦, x̃2 ∈ Ω \ (K +B(0, δ)), ϕ(t̃2, x̃2) ∈ K +B(0, δ/2)

and t̃1− t̃2 ∈ ∆◦. Inductively, one obtains the existence of a sequence (t̃n) in ∆◦ and
a sequence (x̃n) in Ω \ (K +B(0, δ)) such that: t̃n ∈ (∆1/n)

◦, t̃n − ˜tn+1 ∈ ∆◦ and
ϕ(t̃n, x̃n) ∈ K + B(0, δ/2), n ∈ N. Especially, t̃1 − t̃n ∈ ∆◦, n ∈ N and, without
loss of generality, we may assume that limn→∞ ϕ(t̃n, x̃n) = x ∈ K + B(0, δ/2).
Then one gets limn→∞ ϕ(t̃1, x̃n) = limn→∞ ϕ(t̃1− t̃n,ϕ(t̃n, x̃n)) = ϕ(t̃1, x). Since
the mapping ϕ(t̃1, ·) : Ω → Ω is continuous and injective, Brouwer’s theorem implies
that the inverse mapping ϕ(t̃1, ·)−1 : ϕ(t̃1,Ω) → Ω is continuous. Hence, one
obtains that limn→∞ x̃n = x contradicting x̃n ∈ Ω \ (K +B(0, δ)).

The following lemma is suggested by the referee and notably shorten the former
proof of Theorem 2.2 given below.

Lemma 2.2. Let f : Ω → Ω be locally Lipschitz continuous and injective and let

f−1
be also locally Lipschitz continuous. Then Df(x)Df−1(f(x)) = I a.e. with I

being the identity matrix.

PROOF. Denote N := {x ∈ Ω : f is not differentiable in x} and N− := {x ∈
f(Ω) : f−1 is not differentiable in x}. Then

m(N) = m(N−) = 0, f−1(N−) = {x ∈ Ω : f−1 is not differentable in f(x)},

and by Theorem 2.1(iv), m(f−1(N−)) = 0. This implies m(N ∪ f−1(N−)) = 0
and by the chain rule we have

Df(x)Df−1(f(x)) = I, x ∈ Ω \ (N ∪ f−1(N−)).



6 M. Kostić

Theorem 2.2. Suppose ϕ : ∆ × Ω → Ω is a semiflow and ϕ(t, ·) is a locally

Lipschitz continuous function for all t ∈ ∆. Then (ii) implies (i), where

(i) (Tϕ(t))t∈∆ is a strongly continuous semigroup in Lp
ρ1(Ω) and

(ii) ∃M, ω ∈ R ∀t ∈ ∆ :

ρ1(x) ≤ Meω|t|ρ1(ϕ(t, x))| detDϕ(t, x)| a.e. x ∈ Ω. (2.1)

If, additionally, ϕ(t, ·)−1
is locally Lipschitz continuous for every t ∈ ∆, then the

above are equivalent.

PROOF. Suppose that (ii) holds. Then Theorem 2.1(iii) implies:

0Tϕ(t)f0p =
"

Ω
|f(ϕ(t, x))|pρ1(x) dx

≤ Meω|t|
"

Ω
|f(ϕ(t, x))|pρ1(ϕ(t, x))| detDϕ(t, x)| dx

= Meω|t|
"

ϕ(t,Ω)
|f(x)|pρ1(x) dx

≤ Meω|t|0f0p, t ∈ ∆, f ∈ Lp
ρ1(Ω).

Hence, Tϕ(t) ∈ L(Lp
ρ1(Ω)), t ∈ ∆, and

0Tϕ(t)0 ≤ M1/peω|t|/p. (2.2)

Furthermore, the dominated convergence theorem and Lemma 2.1 imply that
limt→0, t∈∆ Tϕ(t)f = f for all f ∈ Cc(Ω); then the strong continuity of (Tϕ(t))t∈∆
follows easily from the standard limit procedure and (2.2). Suppose now that ϕ(t, ·)−1

is locally Lipschitz continuous for every t ∈ ∆ and that (i) holds. The existence of
real numbers M and ω satisfying ||Tϕ(t)|| ≤ Meω|t|, t ∈ ∆, is obvious and, as a
simple consequence of Theorem 2.1(iii), one obtains:

"

ϕ(t,·)−1(L∩ϕ(t,Ω))
ρ1(·) dm =

"

L
χϕ(t,Ω)(·)ρ1(ϕ(t, ·)−1)| detDϕ(t, ·)−1| dm

(2.3)
for t ∈ ∆. Then one can apply [15, Theorem 2.1] and (2.3) (cf. also [16, Appendix
B]) in order to see that, for every t ∈ ∆, the inequality:

χϕ(t,Ω)(·)ρ1(ϕ(t, ·)−1)| detDϕ(t, ·)−1| ≤ Meω|t|ρ1(·) (2.4)
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holds almost everywhere in Ω. By Lemma 2.2, one has

detDϕ(t, x)× detDϕ(t, ·)−1(ϕ(t, x)) = 1 for a.e. x ∈ Ω. (2.5)

In view of (2.4) and (2.5), one obtains that there exists a measurable subset N of Ω
such that m(N) = 0 and for each y ∈ Ω \N :

χϕ(t,Ω)(y)ρ1(ϕ(t, y)
−1) ≤ Meω|t|χϕ(t,Ω)(y)ρ1(y)| detDϕ(t,ϕ(t, y)−1)|. (2.6)

By Theorem 2.1(iv), we obtain that m(ϕ(t, ·)−1(N)) = 0 and an application of (2.6)
implies that (2.1) holds for every x ∈ Ω \ (N ∪ ϕ(t, ·)−1(N)). This completes the
proof of theorem.

Suppose Tϕ(t) : L
p
ρ1(Ω) → Lp

ρ1(Ω) is well defined and continuous for all t ∈ ∆.
Since the range of Tϕ(t), t ∈ ∆ is dense in Lp

ρ1(Ω), one can employ [13, Theorem 1,
Proposition 1] in order to see that the hypercyclicity of (Tϕ(t))t∈∆ is equivalent to its
topological transitivity. By [15, Theorem 2.4], (Tϕ(t))t∈∆ is hypercyclic in Lp

ρ1(Ω)
iff for every compact set K ⊂ Ω there exist a sequence of measurable subsets (Lk)
of K and a sequence (tk) in ∆ such that:

lim
k→∞

"

K \ Lk

ρ(x) dx = 0, lim
k→∞

"

ϕ(tk,Lk)
ρ(x) dx = 0

and lim
k→∞

"

ϕ(tk,·)−1(Lk)
ρ(x) dx = 0. (2.7)

Example 2.1. Let ∆ = [0,∞), Ω = (0,∞), p ∈ [1,∞) and let (an) be a
decreasing sequence of positive real numbers satisfying

#∞
n=1 an = ∞. Put, by

common consent,
#0

i=1 ai := 0 and define f : (0,∞) → (0,∞) by f(x) :=
an+1(x − n) +

#n
i=1 ai if x ∈ (n, n + 1] for some n ∈ N0. Then f(·) is a

strictly increasing, bijective and locally Lipschitz continuous mapping, and more-
over, the inverse mapping f−1 : (0,∞) → (0,∞) possesses the same properties.
Define ϕ : ∆ × Ω → Ω and ρ : Ω → (0,∞) by ϕ(t, x) := f−1(t + f(x)) and
ρ1(x) := 1/(f(x) + 1), t ∈ ∆, x ∈ Ω. It is straightforward to see that ϕ(·, ·) is a
semiflow and that the mapping x )→ ϕ(t, x), x ∈ Ω is locally Lipschitz continuous
for every fixed t ∈ ∆. In general, the mapping x )→ ϕ(t, x), x ∈ Ω need not be dif-
ferentiable and one can simply verify that d

dxf(x) = an+1, x ∈ (n, n+ 1), n ∈ N0

and that
d

dx
f−1(x) =

1

an+1
, x ∈

$
n%

i=1

ai,

n+1%

i=1

ai

&
, n ∈ N0.
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Suppose t ≥ 0, n ∈ N0, k ∈ N0, x ∈ (n, n+1) and t+f(x) ∈ (
#k

i=1 ai,
#k+1

i=1 ai).
Then k ≥ n, d

dxϕ(t, x) =
an+1

ak+1
≥ 1,

ρ1(x)

ρ1(ϕ(t, x))
= 1 +

t

f(x) + 1
≤ 1 + t ≤ et ≤ et

''''
d

dx
ϕ(t, x)

'''' ,

and Theorem 2.2 implies that (Tϕ(t))t≥0 is a strongly continuous semigroup in Lp
ρ1(Ω).

Let us prove that (Tϕ(t))t≥0 is hypercyclic whenever the sequence ( 1
an
) is bounded.

Suppose K = [a, b] ⊂ (0,∞), (tk) is any sequence of positive real numbers satisfy-
ing limk→∞ tk = ∞ and M := supn∈N{ 1

an
: n ∈ N}. Notice that for every k ∈ N

and n ∈ N with tk + f(b) <
#n

i=1 ai :

''f−1(tk + f(b))− f−1(tk + f(a))
'' ≤ max

(
1

a1
, · · · , 1

an+1

)
|f(b)− f(a)|.

This inequality implies

"

ϕ(tk,K)
ρ1(x) dx =

" f−1(tk+f(b))

f−1(tk+f(a))

1

f(x) + 1

≤ f−1(tk + f(b))− f−1(tk + f(a))

f(a) + tk + 1

≤ M
f(b)− f(a)

f(a) + tk + 1

and

lim
k→∞

"

ϕ(tk,K)
ρ1(x) dx = 0.

Furthermore, it is clear that there exists k0 ∈ N such that ϕ(tk, ·)−1(K) = ∅, k ≥ k0;
hence, limk→∞

!
ϕ(tk,K) ρ1(x) dx = 0, (2.7) holds and (Tϕ(t))t≥0 is hypercyclic as

claimed.

Taking into account Lemma 2.1 and the proof of [16, Theorem 3.4], one im-
mediately obtains the following theorem which states when (Tϕ(t))t∈∆ is a strongly
continuous semigroup in C0,ρ(Ω).

Theorem 2.3. Let ϕ : ∆×Ω → Ω be a semiflow. Then (Tϕ(t))t∈∆ is a strongly

continuous semigroup in C0,ρ(Ω) iff the following holds:

(i) ∃M,ω ∈ R ∀t ∈ ∆, x ∈ Ω : ρ(x) ≤ Meω|t|ρ(ϕ(t, x))| and
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(ii) for every compact set K ⊂ Ω and for every δ > 0 and t ∈ ∆ :

ϕ(t, ·)−1(K) ∩ {x ∈ Ω : ρ(x) ≥ δ} is a compact subset of Ω.

Suppose that Tϕ(t) : C0,ρ(Ω) → C0,ρ(Ω) is well defined and continuous for all
t ∈ ∆ and that for every compact set K ⊂ Ω, we have infx∈K ρ(x) > 0. Then [15,
Corollary 2.11] immediately implies that (Tϕ(t))t∈∆ is hypercyclic in C0,ρ(Ω) iff for
every compact set K ⊂ Ω there exists a sequence (tk) in ∆ such that:

lim
k→∞

sup
x∈ϕ(tk,·)−1(K)

ρ(x) = lim
k→∞

sup
x∈ϕ(tk,K)

ρ(x) = 0.

Theorem 2.4. Let ϕ : ∆× Ω → Ω be a semiflow.

(i) Suppose Tϕ(t) : Lp
ρ1(Ω) → Lp

ρ1(Ω) is well defined and continuous for all

t ∈ ∆. Then the following assertions are equivalent.

(i1) (Tϕ(t))t∈∆ is positively supercyclic in Lp
ρ1(Ω).

(i2) For every compact set K ⊂ Ω there exist a sequence (Lk) of measurable

subsets of K, a sequence (tk) in ∆ and a sequence (ck) in (0,∞) such

that:

lim
k→∞

"

K \ Lk

ρ1(x) dx = 0 (2.8)

and

lim
k→∞

ck

"

ϕ(tk,·)−1(Lk)
ρ1(x) dx = lim

k→∞

1

ck

"

ϕ(tk,Lk)
ρ1(x) dx = 0.

(i3) For every compact set K ⊂ Ω there exist a sequence (Lk) of measurable

subsets of K and a sequence (tk) in ∆ such that (2.8) holds and that

lim
k→∞

*"

ϕ(tk,·)−1(Lk)
ρ1(x) dx ∗

"

ϕ(tk,Lk)
ρ1(x) dx

+
= 0. (2.9)

(ii) Suppose that Tϕ(t) : C0,ρ(Ω) → C0,ρ(Ω) is well defined and continuous for

all t ∈ ∆ and that for every compact set K ⊂ Ω, we have infx∈K ρ(x) > 0.
Then the following assertions are equivalent.

(ii1) (Tϕ(t))t∈∆ is positively supercyclic in C0,ρ(Ω).

(ii2) For every compact set K ⊂ Ω there exist a sequence (tk) in ∆ and a

sequence (ck) in (0,∞) such that:

lim
k→∞

ck sup
x∈ϕ(tk,·)−1(K)

ρ(x) = lim
k→∞

1

ck
sup

x∈ϕ(tk,K)
ρ(x) = 0.
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(ii3) For every compact set K ⊂ Ω there exists a sequence (tk) in ∆ such that:

lim
k→∞

*
sup

x∈ϕ(tk,·)−1(K)

ρ(x) ∗ lim
k→∞

sup
x∈ϕ(tk,K)

ρ(x)

+
= 0.

PROOF. Put I := {(c, t) : c ∈ (0,∞), t ∈ ∆}, Tϕ(c, t) := cTϕ(t), (c, t) ∈ I
and notice that the operators Tϕ(c, t), t ∈ ∆ have dense range and commute with
each other. According to [13, Theorem 1, Proposition 1], one obtains that the
positive supercyclicity of (Tϕ(t))t∈∆ is equivalent to the topological transitivity of
(Tϕ(c, t))(c,t)∈I . In view of this, the equivalence of (i1) and (i2) follows automati-
cally from an application of [15, Theorem 4.3]. Suppose now K is a compact subset
of Ω. Then there exist a sequence (Lk) of measurable subsets of K and a sequence
(tk) in ∆ such that (2.8) and (2.9) hold. Notice that, for two arbitrary sequences of
non-negative real numbers (αk)k∈N and (βk)k∈N with limk→∞ αkβk = 0 there are
subsequences (αkl)l∈N and (βkl)l∈N as well as a sequence (cl)l∈N of positive num-
bers such that liml→∞ clαkl = liml→∞ c−1

l βkl = 0 simply by choosing (kl)l∈N as
a strictly increasing sequence of natural numbers with kl > l2 and αkβk < 1/l2

for all k ≥ kl and by setting cl := l(βkl + k−1
l (1 + αkl)

−1). The proof of im-
plication (i3) ⇒ (i2) follows by applying this to αk =

!
ϕ(tkl ,·)

−1(Lkl
) ρ1(x) dx and

βk =
!
ϕ(tkl ,Lkl

) ρ1(x) dx. The proof of part (ii) is done in exactly the same way as
the proof of part (i), so that it can be omitted.

Concerning Theorem 2.4(a), let us stress that it is not clear whether, as in the
case of hypercyclicity (cf. [15, Example 3.19 ]), we can get into a situation where
one must choose a sequence (Lk) of measurable subsets of K, which satisfies Lk ∕=
K, k ≥ k0.

The purpose of this example is to provide a positively supercyclic semigroup
which is not hypercyclic.

Example 2.2. Suppose ∆ = Ω = R, m ∈ N, p : R → R,

p(x) =

2m+1%

i=0

aix
i, p̃(x) =

2m+1%

i=0

|ai|xi, x ∈ R,

a2m+1 > 0 and p′(x) ≥ c > 0, x ∈ R. Then p(·) is bijective and strictly increasing
so that we can define a semiflow ϕ : ∆×Ω → Ω by ϕ(t, x) := p−1(t+p(x)), t, x ∈
R. Suppose that f : R → (0,∞) is an admissible weight function in the sense of [10],
i.e., f(·) is a measurable function and there exist appropriate numbers M ′ ∈ [1,∞)
and ω′ ∈ R so that f(x) ≤ M ′eω

′|t|f(x + t), x, t ∈ R. Define a locally integrable
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function ρ1 : R → (0,∞) by ρ1(x) := f(p(x)), x ∈ R. Further on, let us prove that
there exists C1 ∈ (0,∞) such that for every t, x0 ∈ R :

| detDϕ(t, x0)| ≥
1

C1

,
1 + |t|

2m
2m+1

- . (2.10)

To do that, notice that

| detDϕ(t, x0)| =
p′(x0)

p′(ϕ(t, x0))

and define q : R → R by

q(x) :=
p(x)− (t+ p(x0))

a2m+1
, x ∈ R.

It is well known from the elementary courses of numerical analysis ([22]) that every
zero ξ of a real polynomial r(x) = xs +

#s−1
i=0 bix

i, b0 ∕= 0, s ≥ 2 satisfies

|ξ| < 2max
.
|bi|

1
s−i : 0 ≤ i ≤ s− 1

/
.

Since q(ϕ(t, x0)) = 0, this assertion enables one to deduce that there exists C ∈
(0,∞), independent of t and x0, such that

|ϕ(t, x0)| ≤ 2max

0''''
a2m
a2m+1

'''' ,
''''
a2m−1

a2m+1

''''

1
2

, · · · ,
''''

a1
a2m+1

''''

1
2m

,

''''
a0 − t− p(x0)

a2m+1

''''

1
2m+1

1

≤ 2

2m%

i=0

0''''
ai

a2m+1

''''

1
2m+1−i

+

''''
t

a2m+1

''''

1
2m+1

+

''''
p(x0)

a2m+1

''''

1
2m+1

1

≤ C
,
1 + |t|

1
2m+1 + |p(x0)|

1
2m+1

-
.

Taken together, this estimate and the elementary inequalities |p(x0)| ≤ p̃(|x0|),

1 + |t|
i

2m+1 ≤ 2(1 + |t|
2m

2m+1 ), 0 ≤ i ≤ 2m,

(a+ b+ c)i ≤ 3i−1(ai+ bi+ ci), i ∈ N, a, b, c ≥ 0, imply the existence of positive
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real number C, independent of t and x0, such that

|p′(ϕ(t, x0))| ≤
2m%

i=1

(i+ 1)|ai+1|C2i
,
1 + |t|

1
2m+1 + |p(x0)|

1
2m+1

-2i
+ |a1|

≤
2m%

i=1

(i+ 1)|ai+1|C2i32i−1
,
1 + |t|

2i
2m+1 + |p(x0)|

2i
2m+1

-
+ |a1|

≤ C

$
1 + |t|

2m
2m+1 +

2m%

i=0

|p(x0)|
i

2m+1

&

≤ C

$
1 + |t|

2m
2m+1 +

2m%

i=0

|p̃(|x0|)|
i

2m+1

&

≤ 2C
,
1 + |t|

2m
2m+1

- 2m%

i=0

|p̃(|x0|)|
i

2m+1 .

Hence,

| detDϕ(t, x0)| =
p′(x0)

p′(ϕ(t, x0))
≥ |p′(x0)|

2C
,
1 + |t|

2m
2m+1

- 2m#
i=0

p̃(|x0|)
i

2m+1

. (2.11)

Using positivity of x )→ p′(x)− c, x ∈ R, (2.11) and the following obvious equality

lim
x→∞

|p′(x)|
2m#
i=0

p̃(|x|)
i

2m+1

= (2m+ 1)a
1

2m+1

2m+1,

one immediately yields (2.10) with a suitable positive constant C1. Now the condition
(ii) given in the formulation of Theorem 2.2 follows from the admissibility of f(·)
and (2.10); in conclusion, one gets that (Tϕ(t))t∈R is a strongly continuous group in
Lp
ρ1(Ω). Since ϕ(t, x)−1 = p−1(p(x) − t), t, x ∈ R, we obtain analogously that

there exists C2 ∈ (0,∞) such that:

| detDϕ(t, x0)
−1| ≥ 1

C2

,
1 + |t|

2m
2m+1

- , t, x0 ∈ R. (2.12)

Using Theorem 2.1(iii), (2.10) and (2.12), it follows immediately that for every mea-
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surable subset E of R :

m(ϕ(t, E)) =

"

ϕ(t,E)
dx =

"

E
| detDϕ(t, x)| dx

∈
*

m(E)

C1(1 + |t|
2m

2m+1 )
,
1

c

"

E
p′(x) dx

+
(2.13)

and

m(ϕ(t, ·)−1(E)) ∈
*

m(E)

C2(1 + |t|
2m

2m+1 )
,
1

c

"

E
p′(x) dx

+
, t ∈ ∆. (2.14)

Suppose now that β ≥ 2m/(2m + 1) and that a bounded measurable function h :
R → (0,∞) is defined by:

h(s) :=

2
34

35

d

ds
log[(s+ 1)β + 1], s ≥ 0,

1, s < 0.

(2.15)

Put now f(x) := exp
6! x

0 h(s)ds
7
, x ∈ R; then

f(x)

f(x+ t)
= e

! x+t
x h(s) ds ≤ esups∈R h(s)|t|, x, t ∈ R,

f(·) is admissible and ρ1(x) = e
! p(x)
0 h(s) ds, x ∈ R. We will prove that (Tϕ(t))t∈R is

positively supercyclic in Lp
ρ1(R) and that (Tϕ(t))t∈R is not hypercyclic in Lp

ρ1(R). To
this end, let −∞ < a < b < ∞, K = [a, b] and let (tk) be an arbitrary sequence of
positive real numbers such that limk→∞ tk = ∞. It is clear that there exists k0 ∈ N
such that, for every k ∈ N with k ≥ k0, p(a) + tk ≥ 0 and p(b) − tk ≤ 0. The
assumption x ∈ ϕ(tk, ·)−1(K), resp. x ∈ ϕ(tk,K) is equivalent to p(x) ∈ [p(a) −
tk, p(b) − tk], resp. p(x) ∈ [p(a) + tk, p(b) + tk]. Thus, ρ1(x) = e

! p(x)
0 h(s)ds =

ep(x), k ≥ k0, x ∈ ϕ(tk, ·)−1(K) and

ρ1(x) = e
! p(x)
0 h(s)ds ≤ e

! tk+p(b)
0 [ d

ds
log((s+1)β+1)] ds

=
1

2

,
(tk + p(b) + 1)β + 1

-
, k ≥ k0, x ∈ ϕ(tk,K).

Having in mind these inequalities as well as (2.13)–(2.14), one gets:
"

ϕ(tk,·)−1(K)
ρ1(x) dx ≤ ep(b)e−tk

(
1

c

"

K
p′(x) dx

)
, k ≥ k0 (2.16)
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and
"

ϕ(tk,K)
ρ1(x) dx ≤ 1

2

,
(tk + p(b) + 1)β + 1

-(
1

c

"

K
p′(x) dx

)
, k ≥ k0.

(2.17)
Now one can employ (2.16)-(2.17) and Theorem 2.4(a) with Lk = K, k ∈ N to con-
clude that (Tϕ(t))t∈R is positively supercyclic in Lp

ρ1(R). Suppose that (Tϕ(t))t∈R
is hypercyclic in Lp

ρ1(R) and that K is a compact subset of R such that infK ≥ ζ,
where ζ is a unique real zero of the polynomial p(·). Then we have the existence of a
sequence of measurable subsets (Lk) of K and a sequence (tk) in R such that (2.7)
holds. It can be straightforwardly proved that (tk) must be unbounded and, without
loss of generality, we may assume that limk→∞ tk = +∞. Since p(x) ≥ 0, x ∈ K
one gets ρ1(x) = 1

2((1 + p(x))β + 1) ≥ 1, x ∈ K, limk→∞m(K \ Lk) = 0, and
consequently, there exists k1 ∈ N, k1 ≥ k0 such that m(Lk) ≥ 1

2m(K), k ≥ k1.
Then (2.13) implies:

m(ϕ(t, Lk)) ≥
m(Lk)

C1

,
1 + |t|

2m
2m+1

- ≥ m(K)

2C1

,
1 + |t|

2m
2m+1

- , t ∈ R, k ≥ k1. (2.18)

Since β ≥ 2m/(2m+ 1) and

ρ1(x) = e
! p(x)
0 h(s) ds ≥ e

! tk+p(a)
0 [ d

ds
log((s+1)β+1)] ds

=
1

2
((tk + p(a) + 1)β + 1), k ≥ k0, x ∈ ϕ(tk, Lk),

(2.18) yields:
"

ϕ(tk,Lk)
ρ(x) dx ≥ m(K)

2C

(
1 + t

2m
2m+1

k

)
8
1

2
(tk + p(a) + 1)β +

1

2

9
! 0, k → ∞.

The last estimate proves that (Tϕ(t))t∈R is not hypercyclic in Lp
ρ1(R).

3. Disjoint hypercyclic semigroups induced by semiflows

Definition 3.1. Let n ∈ N, n ≥ 2 and let (Ti(t))t∈∆ be hypercyclic strongly con-
tinuous semigroups in X, i = 1, 2, . . . , n. It is said that the semigroups (Ti(t))t∈∆, i =
1, 2, . . . , n are:

(i) disjoint hypercyclic, in short d-hypercyclic, if there exists x ∈ X such that

{(T1(t)x, . . . , Tn(t)x) | t ∈ ∆} = Xn. (3.1)
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An element x ∈ X which satisfies (3.1) is called a d-hypercyclic vector asso-
ciated to the semigroups (T1(t))t∈∆, (T2(t))t∈∆, · · · , (Tn(t))t∈∆;

(ii) disjoint topologically transitive, in short d-topologically transitive, if for any
open non-empty subsets V0, V1, . . . , Vn of X, there exists t ∈ ∆ such that
V0 ∩ T1(t)

−1(V1) ∩ · · · ∩ Tn(t)
−1(Vn) ∕= ∅.

It follows immediately from Definition 3.1 that d-hypercyclicty of (Ti(t))t∈∆, i =
1, 2, · · ·, n implies that, for every i, j ∈ {1, 2, . . . , n} with i ∕= j, there exists
t ∈ ∆ \ {0} such that Ti(t) ∕= Tj(t).

Suppose (Ti(t))t∈∆, i = 1, 2, . . . , n are strongly continuous semigroups. Argu-
ing as in the proofs of [4, Proposition 2.3] and [13, Satz 1.2.2], one obtains that
d-topological transitivity of (Ti(t))t∈∆, i = 1, 2, . . . , n implies that (Ti(t))t∈∆, i =
1, 2, . . . , n are d-hypercyclic and that the set of all d-hypercyclic vectors associated
to (T1(t))t∈∆, (T2(t))t∈∆, . . . , (Tn(t))t∈∆ is a dense Gδ-subset of X.

Now we are in a position to clarify the following theorem which concerns suffi-
cient conditions for d-topological transitivity of strongly continuous semigroups on a
class of weighted function spaces.

Theorem 3.1. Suppose p ∈ [1,∞), n ∈ N \ {1}, ϕi : ∆×Ω → Ω is a semiflow

for all i = 1, 2, · · ·, n, ρ : Ω → (0,∞) is an upper semicontinuous function and

ρ1 : Ω → (0,∞) is a locally integrable function.

(i) Suppose that X = C0,ρ(Ω) and that (Tϕi(t))t∈∆, i = 1, 2, . . . , n are strongly

continuous semigroups in X. If for every compact set K ⊂ Ω there exists a

sequence (tk) in ∆ which satisfies the following conditions:

(A) lim
k→∞

sup
ϕi(tk,x)∈ϕj(tk,K)

ρ(x) = 0, i, j ∈ {1, 2, . . . , n}, i ∕= j, and

(B) lim
k→∞

sup
x∈ϕi(tk,·)−1(K)

ρ(x) = lim
k→∞

sup
x∈ϕi(tk,K)

ρ(x) = 0, i = 1, 2, . . . , n,

then the semigroups (Tϕi(t))t∈∆, i = 1, 2, . . . , n, are d-topologically transi-

tive.

(ii) Suppose that X = Lp
ρ1(Ω) and that and that (Tϕi(t))t∈∆, i = 1, 2, . . . , n are

strongly continuous semigroups in X. If for every compact set K ⊂ Ω there

exist a sequence of measurable subsets (Lk) of K and a sequence (tk) in ∆
which satisfies the following conditions for i, j ∈ {1, 2, . . . , n},

(A1) lim
k→∞

!
K \ Lk

ρ1(x) dx = 0;

(B1) lim
k→∞

!
ϕi(tk,·)−1(ϕj(tk,Lk))

ρ1(x) dx = 0, i ∕= j;
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(C1) lim
k→∞

!
ϕi(tk,·)−1(Lk)

ρ1(x) dx = lim
k→∞

!
ϕi(tk,Lk)

ρ1(x) dx = 0,

then the semigroups (Tϕi(t))t∈∆, i = 1, 2, . . . , n, are d-topologically transi-

tive.

PROOF. To prove (i), notice that Theorem 2.3 and the suppositions (A) and
(A’) imply that (Tϕi(t))t∈∆ is a locally equicontinuous semigroup in X for all i =
1, 2, . . . , n. In order to prove that (Tϕi(t))t∈∆, i = 1, 2, . . . , n are d-topologically
transitive, let us suppose ' > 0, u, v1, . . . , vn ∈ Cc(Ω) and K = suppu ∪ suppv1 ∪
· · · ∪ suppvn. The prescribed assumption implies that, for the compact set K, one
can find a sequence (tk) in ∆ satisfying (A)–(B). Define, for every k ∈ N, a function
ωk : Ω → K by setting:

ωk(x) := u+

n%

i=1

vi(ϕi(tk, ·)−1)χϕi(tk,suppvi).

Clearly, suppωk is a compact set for every k ∈ N and Brouwer’s theorem implies that
ωk ∈ Cc(Ω), k ∈ N. Hence, the proof of (i) follows immediately if one prove that
there exist k0 ∈ N and t ∈ ∆ which fulfill the next condition:

max (||ωk0 − u||, ||Tϕ1(t)ωk0 − v1||, . . . , ||Tϕn(t)ωk0 − vn||) < '. (3.2)

The definition of ωk(·) gives the next inequality:

||ωk − u|| ≤
n%

i=1

||vi||∞
n%

i=1

sup
x∈ϕi(tk,suppvi)

ρ(x), k ∈ N. (3.3)

Owing to (A) and (3.3), there exists k0,0 ∈ N such that:

||ωk − u|| < ', k ≥ k0,0. (3.4)

Proceeding in a similar way, one gets that, for every k ∈ N and i = 1, 2, . . . , n :

||Tϕi(tk)ωk − vi|| ≤ ||u||∞ sup
x∈ϕi(tk,·)−1(K)

ρ(x)

+
%

1≤j≤n
j ∕=i

||vj ||∞
%

1≤j≤n
j ∕=i

sup
x∈ϕi(tk,·)−1(ϕj(tk,suppvj))

ρ(x).

Now an application of (A)–(B) shows that, for every i = 1, 2, . . . , n, there exists
k0,i ∈ N such that:

||Tϕi(tk)ωk − vi|| < ', k ≥ k0,i. (3.5)
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Put k0 := max(k0,0, . . . , k0,n) and notice that (3.4) and (3.5) imply the validity of
(3.2) with t = tk0 . To prove (ii), suppose ' > 0, u, v1, . . . , vn ∈ Cc(Ω) and K =
suppu∪ suppv1∪ · · ·∪ suppvn. For this compact set K ⊂ Ω, one can find a sequence
of measurable subsets (Lk) of K and a sequence (tk) in ∆ satisfying (A1)-(C1).
Define, for every k ∈ N, a function ωk : Ω → K as follows:

ωk := uχLk
+

n%

i=1

vi(ϕi(tk, ·)−1)χϕi(tk,Lk).

It can be simply verified that ωk ∈ Lp
ρ1(Ω), k ∈ N. Proceeding as in the proof of

(i), we have the existence of a positive real number c such that, for every k ∈ N and
i = 1, 2, . . . , n :

||ωk − u||p ≤ c[||u||p∞
"

K \ Lk

ρ1(x) dx+

n%

i=1

||vi||p∞
"

ϕi(tk,Lk)
ρ1(x) dx]

and

||Tϕi(tk)ωk − vi||p ≤ c[||vi||p∞
"

K \ Lk

ρ1(x) dx+ ||u||p∞
"

ϕi(tk,·)−1(Lk)
ρ1(x) dx

+
%

1≤j≤n
j ∕=i

||vj ||p∞
"

ϕi(tk,·)−1(ϕj(tk,Lk))
ρ1(x) dx].

By (A1)–(C1), one gets that the semigroups (Tϕi(t))t∈∆, i = 1, 2, . . . , n are d-
topologically transitive in Lp

ρ1(Ω), as required.

Problem (2008). Suppose K is a compact subset of Ω and the strongly con-
tinuous semigroups (Tϕi(t))t∈∆, i = 1, 2, . . . , n, are d-topologically transitive in
C0,ρ(Ω), resp. Lp

ρ1(Ω). Does there exist a sequence (tk) in ∆ satisfying (A)–(B),
resp. a sequence of measurable subsets (Lk) of K and a sequence (tk) in ∆ satisfy-
ing (A1)–(C1)?

Repeating literally the arguments given in the proof of Theorem 3.1 (i), one can
prove the following assertion concerning d-topological transitivity of strongly con-
tinuous semigroups on the Fréchet space C(Ω).

Theorem 3.2. Suppose that ϕi : ∆×Ω → Ω is a semiflow for all i = 1, 2, . . . , n,

and that for every compact set K ⊂ Ω there exists a sequence (tk) in ∆ satisfying

the following condition: For every compact set K ′ ⊂ Ω there exists k0(K
′) ∈ N such

that:
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(A2) ϕi(tk, ·)−1(ϕj(tk,K)) ∩ K ′ = ∅, i, j ∈ {1, 2, . . . , n}, i ∕= j, k ≥ k0(K
′)

and

(B2) ϕi(tk,K) ∩ K ′ = ϕi(tk, ·)−1(K) ∩ K ′ = ∅, i = 1, 2, . . . , n, k ≥ k0(K
′).

Then (Tϕi(t))t∈∆ is a strongly continuous semigroup in C(Ω) for every i ∈ {1, . . . , n}
and (Tϕ1(t))t∈∆, . . . , (Tϕn(t))t∈∆ are d-topologically transitive in C(Ω).

Example 3.1. (i) Suppose p ∈ [1,∞), α ∈ (0, π2 ], ∆ ∈ {[0,∞), ∆(α)},
Ω = (1,∞), n ∈ N \ {1} and 0 < α1 < · · · < αn ≤ 1. Define ϕi : ∆× Ω →
Ω, i = 1, 2, . . . , n, and ρ1 : Ω → (0,∞) by:

ϕi(t, x) := (Re(t) + xαi)1/αi and ρ1(x) := e−xα1
, t ∈ ∆, x ∈ Ω.

It is straightforward to check that ϕi(·, ·) is a semiflow for all i = 1, 2, . . . , n.
We will prove that the semigroups (Tϕi(t))t∈∆, i = 1, 2, . . . , n, are d-topologi-
cally transitive in Lp

ρ1(Ω); without loss of generality, we may assume that
∆ = [0,∞). The existence of numbers M ∈ [1,∞) and ω ∈ R satisfying:

ρ1(x) ≤ Meω|t|ρ1(ϕi(t, x)), t ≥ 0, x ∈ Ω, i = 1, 2, . . . , n, (3.6)

is obvious. Furthermore, we have that, for every t ≥ 0, x ∈ Ω and i =
1, 2, . . . , n :

''''
d

dx
ϕi(t, x)

'''' =
(
1 +

t

xαi

) 1−αi
αi

∈
8
1, (1 + t)

1−αi
αi

9
. (3.7)

We infer easily from (3.6) and (3.7) that the condition (ii) of Theorem 2.2 is
fulfilled so that (Tϕi(t))t∈∆, i = 1, 2, . . . , n, are strongly continuous semi-
groups in Lp

ρ1(Ω). (Suppose 1 < a < b < ∞ and K = [a, b]. Clearly, there
exists t0 ∈ (0,∞) such that:

(t+ xαn)
1

αn < (t+ xαn−1)
1

αn−1 < · · · < (t+ xα1)
1
α1 , t ≥ t0, x ∈ [a, b].

Let Lk = K, k ∈ N and let (tk) be any increasing sequence of positive
real numbers satisfying limk→∞ tk = ∞ and t1 ≥ max(bα1 , . . . , bαn , t0).
Then (A1) holds and there exists k0 ∈ N such that for every k ≥ k0 and i, j ∈
{1, 2, . . . , n} with i < j :

ϕi(tk, ·)−1(K) = ϕi(tk, ·)−1(ϕj(tk,K)) = ∅. (3.8)

Furthermore, one can simply verify that limk→∞
!
ϕi(tk,K) ρ1(x) dx = 0 for

all i = 1, 2, · · ·, n. Now one can employ (3.8) in order to conclude that (C1)
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holds and that (B1) holds with i < j. So, it is enough to prove the validity of

(B1) with i > j; to this end, define f : [a, b] → R by f(x) := ((tk +xαj )
αi
αj −

tk)
1
αi , x ∈ [a, b]. Then

f ′(x) = xαj−1((tk + xαj )
αi
αj − tk)

1
αi

−1
(tk + xαj )

αi
αj

−1

≤ aαj−1(tk + bαj )
αi
αj

−1
(tk + bαj )

αi
αj

1−αi
αi

= aαj−1(tk + bαj )
1−αj
αj , x ∈ [a, b],

and the Lagrange mean value theorem implies that, for every k ∈ N :

((tk + bαj )
αi
αj − tk)

1
αi − ((tk + aαj )

αi
αj − tk)

1
αi

(b− a)aαj−1 ≤ (tk + bαj )
1−αj
αj .

In other words,

meas(ϕi(tk, ·)−1(ϕj(tk,K))) ≤ (b− a)aαj−1(tk + bαj )
1−αj
αj . (3.9)

The existence of an integer ki,j ∈ N satisfying ρ1(x) ≤ e−t
α1/αi
k for all x ∈

ϕi(tk, ·)−1(ϕj(tk,K)) and k ≥ ki,j is clear. Thereby, we have the following:
"

ϕi(tk,·)−1(ϕj(tk,K))
ρ1(x) dx ≤ meas(ϕi(tk, ·)−1(ϕj(tk,K)))e−t

α1/αi
k ,

(3.10)
for k ≥ ki,j . Now (B1) follows from (3.9)–(3.10) and Theorem 3.1 implies
that the semigroups (Tϕi(t))t≥0, i = 1, 2, . . . , n are d-topologically transitive
in Lp

ρ1(Ω), as claimed.

(ii) Suppose α ∈ (0, π2 ], m ∈ N, ∆ ∈ {[0,∞), ∆(α)}, Ω = (0,∞)m, Θ =
[1,∞)m, n ∈ N \ {1}, [αij ]1≤i≤n, 1≤j≤m is a matrix whose elements are posi-
tive real numbers and c = min1≤i≤n, 1≤j≤m αij . Suppose, in addition, that for
every i, j ∈ {1, 2, . . . , n} with i ∕= j, there exists l ∈ {1, . . . ,m} such that
αil ∕= αjl. Define ϕi : ∆ × Ω → Ω, i = 1, 2, . . . , n, and ρ : Ω → (0,∞) by
setting:

ϕ̃i(t, x) :=
,
(Re(t) + xαi1

1 )1/αi1 , . . . , (Re(t) + xαim
m )1/αim

-

and
ρ̃(x) := e−(xc

1+···+xc
m), t ∈ ∆, x = (x1, . . . , xm) ∈ Ω.
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Notice that, for every i = 1, 2, . . . , n and t ∈ ∆, Tϕ̃i(t) /∈ L(C0,ρ̃(Ω)) since
the condition (ii) given in the formulation of Theorem 2.3 does not hold. Define
ρ : Θ → (0,∞) and ϕi : ∆ × Θ → Θ by ρ(x) := ρ̃(x) and ϕi(t, x) :=
ϕ̃i(t, x), t ∈ ∆, x ∈ Θ. Let us show that, for every fixed i = 1, 2, . . . , n
and t ∈ ∆, the mapping Tϕi(t) : C0,ρ(Θ) → C0,ρ(Θ) is well defined and
continuous. The simple calculation

sc−(Re(t)+sαij )
c

αij ≥ sc−(Re(t)
c

αij +sαij
c

αij ) = −Re(t)
c

αij ≥ −1−Re(t),

for s ≥ 1, 1 ≤ j ≤ m implies

−(xc1 + · · ·+ xcm) ≤− ((Re(t) + xαi1
1 )c/αi1 + · · ·+ (Re(t) + xαim

m )c/αim)

+ (m+ Re(t)), x ∈ Θ,

i.e.,
ρ(x) ≤ emeRe(t)ρ(ϕi(t, x)), x ∈ Θ.

Thereby, the condition (ii) (a) quoted in the formulation of [16, Theorem 2.2,
p. 1601] holds. On the other hand, it is checked at once that for every compact
set K of Θ and for every t ∈ ∆ and σ > 0, ϕ(t, ·)−1(K) ∩ {x ∈ Θ : ρ(x) ≥
δ} is a compact subset of Θ, and this implies that the condition (ii)(b) quoted
in the formulation of [16, Theorem 2.2] also holds. By [16, Theorem 2.2], one
gets that Tϕi(t) ∈ L(C0,ρ(Θ)). Furthermore, the proof of [16, Theorem 2.2]
(cf. also Lemma 2.1) implies that, for every i = 1, 2, . . . , n, (Tϕi(t))t∈∆ ⊂
L(C0,ρ(Θ)) is a strongly continuous semigroup in C0,ρ(Θ) and the analysis
given in (i) implies that the semigroups (Tϕi(t))t∈∆, i = 1, 2, . . . , n, are d-
topologically transitive in C0,ρ(Θ).

(iii) Suppose that every element of a real matrix [aij ]1≤i≤n, 1≤j≤m is a positive
real number and that for every i, j ∈ {1, 2, . . . , n}, with i ∕= j, there exists
l ∈ {1, . . . ,m} such that ail ∕= ajl. Let p ≥ 1, q > m/2, ∆ = [0,∞) and
let Ω be as in (ii). Define semiflows ϕi : ∆ × Ω → Ω, i = 1, 2, . . . , n and
ρ1 : Ω → (0,∞) as follows:

ϕi(t, x1, . . . , xm) := (eai1tx1, . . . , e
aimtxm) (3.11)

and

ρ1(x1, . . . , xm) :=
1

(1 + |x|2)q , t ∈ ∆, x = (x1, . . . , xm) ∈ Ω. (3.12)

One can simply verify that (Tϕi(t))t≥0 is a strongly continuous semigroup in
Lp
ρ1(Ω), 1 ≤ i ≤ n. Suppose K = [a1, b1] × · · · × [am, bm] is a compact



On hypercyclicity and supercyclicity of strongly continuous semigroups . . . 21

subset of Ω and set Lk := K, k ∈ N. Let (tk) be a sequence in ∆ such that
t1 is sufficiently large and that limk→∞ tk = ∞. It can be simply checked that
(A1) and (C1) hold. To see that (B1) also holds, suppose i, j ∈ {1, 2, . . . , n},
i ∕= j, ail ∕= ajl, x = (x1, · · ·, xm) ∈ ϕi(tk, ·)−1(ϕj(tk,K)) and notice that:

lim
r→∞

"

|x|≥r

dx

(1 + |x|2)q = 0. (3.13)

Obviously, xs ∈ [e(ajs−ais)tkas, e
(ajs−ais)tkbs], s = 1, . . . ,m. In the case

ail < ajl, (3.13) immediately leads us to the following:
"

ϕi(tk,·)−1(ϕj(tk,K))

dx

(1 + |x|2)q ≤
"

|x|≥e
(ajl−ail)tkal

dx

(1 + |x|2)q → 0, k → ∞.

Suppose now ail > ajl. Then the inequality:

(1 + |x|2)q ≥ (1 + x21)
q/m · · · (1 + x2m)q/m

and (3.13) imply the existence of an appropriate positive real number C, de-
pending only on K, p, m and [aij ]1≤i≤n, 1≤j≤m, so that:

"

ϕi(tk,·)−1(ϕj(tk,K))

dx

(1 + |x|2)q

≤
" e

(ajl−ail)tk bl

e
(ajl−ail)tkal

dx

(1 + x2l )
q/m

:

1≤s≤m
s ∕=l

" e(ajs−ais)tk bs

e(ajs−ais)tkas

dx

(1 + x2s)
q/m

≤ e(ajl−ail)tk(bl − al)
:

1≤s≤m
s ∕=l

" e(ajs−ais)tk bs

e(ajs−ais)tkas

dx

(1 + x2s)
1/2

= e(ajl−ail)tk(bl − al)
:

1≤s≤m
s ∕=l

log
e(ajs−ais)tkbs +

;
e2(ajs−ais)tkb2s + 1

e(ajs−ais)tkas +
;

e2(ajs−ais)tka2s + 1

≤ Ce(ajl−ail)tk(bl − al) → 0, k → ∞. (3.14)

Hence, Eq. (3.14) shows that (B1) holds and the semigroups (Tϕi(t))t≥0, i =
1, 2, . . . , n, are d-topologically transitive in Lp

ρ1(Ω) (cf. also [15, Example
3.19] and [16, Theorem 6.22]). Define <ϕi : ∆ × Rm → Rm, i = 1, 2, . . . , n
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and ρ̃1 : Rm → (0,∞) through (3.11) and (3.12). In this case, the strongly
continuous semigroups (T"ϕi

(t))t≥0, i = 1, 2, . . . , n, are d-topologically tran-
sitive in Lp

ρ̃1
(Rm). This fact follows from the previous computations and The-

orem 3.1; notice only that we must use an appropriate sequence (Lk) of mea-
surable subsets of K satisfying 0 /∈ L◦

k, k ∈ N. Herein we point out that
an employment of [15, Theorem 3.7] implies that, for every i = 1, 2, . . . , n,
(Tϕi(t))t≥0, resp. (T"ϕi

(t))t≥0, is a non-hypercyclic strongly continuous semi-
group in C0,ρ1(Ω), resp. C0,ρ̃1(Rm).

Example 3.2. Suppose ∆ = [0,∞), Ω = {(x, y) ∈ R2 : x2 + y2 > 1},
|(x, y)| =

=
x2 + y2, (x, y) ∈ R2, n ∈ N \ {1}, 0 < p1 < · · · < pn < ∞,

qi ∈ R, 1 ≤ i ≤ n, K is a compact subset of Ω and, for 1 ≤ i ≤ n:

ϕi(t, x, y) = epit(x cos qit− y sin qit, x sin qit+ y cos qit), t ≥ 0, (x, y) ∈ Ω.

Since |ϕi(t, x, y)| = epit|(x, y)|, t ≥ 0, (x, y) ∈ Ω, 1 ≤ i ≤ n, one can simply
check that, for every i ∈ {1, . . . , n}, ϕi : ∆ × Ω → Ω is a semiflow. Let (tk) be a
sequence in ∆ such that limk→∞ tk = ∞. Then for an arbitrary compact subset K ′ of
Ω, it is straightforward to verify that (A2) and (B2) hold. According to Theorem 3.2,
the strongly continuous semigroups (Tϕi(t))t≥0, i = 1, 2, . . . , n are d-topologically
transitive in C(Ω).

Finally, let us notice that Example 2.1 can be used for the construction of d-
topologically transitive semigroups induced by non-differentiable semiflows.
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