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Abstract: This paper presents a class of integer codes suitable for use in optical networks 

with low error rates. The presented codes are constructed with the help of a computer and 

have two important features: first, they can correct single errors affecting one or two b-bit 

bytes, and second, they use processor-friendly operations to encode/decode data bits. The 

effectiveness of the presented codes is demonstrated on theoretical models of four-core and 

six-core processors. The obtained results show that the decoder throughput reaches 14.70 

Gbps, which is above the operating speed of 10G networks. Finally, the paper compares 

the proposed codes with BCH codes of similar properties. The comparison is made in 

terms of redundancy and the number of decoding operations. 
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1. Introduction 
 

In most communication systems, the choice of a particular error correcting code depends 

upon the channel characteristics. In wireless networks, for example, channel errors occur in the 

form of bursts [1], [2]. For this reason, packets, transmitted over these networks, are protected 

with very powerful codes, such as Reed-Solomon (RS) codes. On the other hand, in optical 

networks (ONs) channel errors mostly affect isolated bits. Moreover, the experiments [3]-[5] 

have shown that, under normal conditions, the vast majority of corrupted packets contain only 

single errors. However, if ONs operate with receiver power less than the ideal, there will be an 

increase in the number of packets having two random errors [4]. This can lead to a significant 

deterioration in the quality of service (QoS), especially in cases where data is delay-sensitive 

and protected by cyclic redundancy codes (CRCs). 

In order to avoid such a scenario, it is necessary to replace the CRCs with codes correcting 

two random errors. The most optimal candidates for that purpose are the Zetterberg codes [6], 

the Bose-Chaudhuri-Hocquenghem (BCH) codes [7] and the Orthogonal Latin Square (OLS) 

codes [8]. All these codes can correct single and double errors, but at different prices. So, for 

example, the Zetterberg and BCH codes have low redundancy and complex [7] or very complex 

[6] decoding procedure. On the other hand, the OLS codes are extremely inefficient in terms of 

redundancy, but can be decoded faster than all other double error correcting (DEC) codes. 

https://link.springer.com/chapter/10.1007/978-81-322-2292-7_8
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Besides the mentioned codes, the potential candidates could be DEC codes detecting all 

unidirectional errors [9]-[13]. Although these codes are much more complex than standard DEC 

codes, they could be very useful when transmitting both real-time and non-real-time data. The 

same goes for RS codes, as well as for all other codes that can correct double (spotty) byte errors 

[14]-[16]. 

However, whichever of the above codes we choose, we will face the problem of their 

implementation. The reason is that these codes use finite field (FF) arithmetic, which is not 

supported by modern processors. Hence, to achieve high throughputs, the codes from [6]-[16] 

must be implemented in dedicated hardware (e.g. the software-based DEC-BCH decoders need 

several tens of clock cycles to process one bit [17], [18]). This, however, would lead to a 

significant increase in the cost of the network, since all nodes would have to be equipped with 

additional encoding/decoding (E/D) circuits. 

Having this in mind, in this paper we present a class of codes whose implementation does 

not require the use of dedicated E/D hardware. The reason for this lies in the fact that network 

nodes are processor-based devices, and that already have hardware support for operations used 

by the proposed codes (integer and lookup table (LUT) operations). This means that all 

operations can be performed in the software, including data E/D and code rate change. Besides 

this feature, the proposed codes can correct single errors within one or two b-bit bytes. Given 

that these errors are dominant in most ONs, it is easy to conclude that the application of the 

proposed codes would allow the receiver to recover the majority of the corrupted packets. This 

would also lead to improving the QoS for delay-sensitive applications such as voice and video. 

The organization of this paper is as follows: Section 2 deals with the construction of integer 

codes capable of correcting single errors within one or two bytes. The error correction procedure 

for these codes is described in Section 3. In Section 4, the presented codes are evaluated and 

compared with DEC-BCH codes, while Section 5 concludes the paper. 

2. Codes Construction 

Definition 1.  [23] Let 2 1−bZ = {0, 1,…, 2b ‒ 2} be the ring of integers modulo 2b ‒ 1 and let 
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= iB be the integer representation of a b-bit byte, where na {0, 1} and 1 ≤ i ≤ k.  

Then, the code C  (b, k, c), defined as 
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is an (kb + b, kb) integer code, where c = (C1, C2, ..., Ck, 1)
+1

2 1b

kZ
−

 is the coefficient vector and 

Bk+1 2 1−
 bZ is an integer. 
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Definition 2. [23] Let x = (B1, B2,…, Bk, Bk+1)
+1

2 1b

kZ
−

 , y = (B1, B2,…, Bk, Bk+1)
+1

2 1b

kZ
−

 and   

e = (B1 – B1, B2 – B2,…, Bk – Bk, Bk+1 – Bk+1) = (e1, e2,...,   ek, ek+1)
+1

2 1b

kZ
−

 be respectively, the sent  

codeword, the received codeword and the error vector. Then, the syndrome S of the received 

codeword is defined as 

+1

+1

1 1

(mod 2 1) (mod 2 1)i i k i i
= =

=  − − =  − 
k k

b b

i i

S C B B e C                                                                                                                                                                                (2) 

The first step in the construction of the proposed codes is to determine the integer values of 

single errors corrupting one and two b-bit bytes. For that purpose, we will rely on the analysis 

from [22]. In that paper, it was shown that the integer value of a single error is equal to ei
 = ± 2r, 

where 0 ≤ r ≤ b ‒ 1 and 1 ≤ i ≤ k + 1. From this it is easy to conclude that two single errors will 

change the integer values of two b-bit bytes by ei
 = ej

 = ± 2r, where 0 ≤ r ≤ b ‒ 1 and 1 ≤ i < j ≤ k 

+ 1. Having this in mind, we can give the following definitions and theorems. 

Definition 3.   The set of syndromes corresponding to single errors corrupting one b-bit byte 

is defined as 

 1 = ± 2 (mod 2 1): 0 – 1,1 1 −    r b

is C r b i k +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 (3) 

Definition 4.   The set of syndromes corresponding to single errors corrupting two b-bit bytes 

is defined as 

 2 = ± 2 ± 2 (mod 2 1) : 0 , –1,1 1  −     r s b

i js C C r s b i j k +                                                                                                                                              (4) 

Theorem 1. The codes defined by (1) can correct all single errors corrupting one and two 

b-bit bytes if there exist k mutually different coefficients  
2

0,1
-1
\ biC Z such that 
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where |  X  | denotes the cardinality of X. 

Proof. From [22] we know that Condition 1 is the necessary and sufficient condition for 

correcting single errors. On the other hand, Conditions 2 implies that single errors corrupting 

two b-bit bytes generate 2 1  2 ( )b k k+ nonzero syndromes. To prove this, observe that the set s2 

can be expressed as 

2

1

k

i
i=

=s d  

where 

 1 1= ± 2 ± 2 (mod 2 1):0 , –1, 2 1d   −    r s b

jC C r s b j k +  
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 

 
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Obviously, if the coefficients Ci have values such that 
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Finally, Condition 3 is a necessary condition for distinguishing single errors corrupting one b-bit 

byte from those corrupting two b-bit bytes. Hence, the codes satisfying the conditions 1 to 3 are 

able to correct all single errors corrupting one or two b-bit bytes. □  

Theorem 2. Let 1 2=ξ s s be the error set for (kb + b, kb) integer codes correcting single 

errors within one or two b-bit bytes. Then, 

1 2 2 1 1 .( ) ( + )k + k= + =    ξ s s b b  

Proof. This theorem follows directly from Theorem 1.  

Theorem 3. For any (kb + b, kb) integer code correcting single errors within one or two b-

bit bytes it holds that 

1 22 ( 1) 4 1
.

2

 + − − − −
 
  

b+ b b
k

b
 

Proof. From Definition 1 we know that the total number of nonzero syndromes is equal to 

2b – 2. On the other hand, from Theorem 2 we know that the error set has 2 1 1( + ) ( )k k +   b b  

nonzero elements. Obviously, we have the inequality 

2 1 1 2 2( + ) ( )k k +     −bb b  

wherefrom it follows that 

1 22 ( 1) 4 1
.

2

 + − − − −
 
  

b+ b b
k

b
□ 

The last step in constructing the presented codes is to find the Ci's that satisfy conditions of 

Theorem 1. For that purpose, it is necessary to use a computer. Through several experiments we 

investigated how the number of the Ci's depends on the byte length (Table 1). Besides this, we 
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have focused on finding the coefficients for 16-bit and 32-bit codes (Table 2). The reason is that 

these codes are best suited for implementation on 32/64-bit processors. 

 

3. Error Correction Procedure 

From Theorem 2 we know that the number of correctable errors is equal to |ξ|. Besides this, 

from the same theorem we implicitly know that the relationship between the syndrome (element 

of ξ), error location(s) (i, j) and error vector(s) (E1, E2) can be described using (3)-(4). From this  

it is easy to conclude that the syndrome table (ST) requires 3 2 2+ ( +1)b log k     ξ bits (Fig. 

1) to store the error correction data. 

Given this, suppose that the codeword is received in error (S ≠ 0) and that the elements of ξ 

are sorted in increasing order. In that case, the decoder will perform n1 table lookups and n1 

comparisons (1 ≤ n1 ≤ 2 2)log +  [19]-[24] to find the entry where the first b bits match that 

of the syndrome S. After that, it will execute the operation(s): 

•   for single errors corrupting one b-bit byte 

1 mod 2 1 +1( 1), ;i iB B i k= + −  bE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     (5) 

  E1{ 2r (mod 2b ‒ 1): 0 ≤ r ≤ b ‒ 1} 

• for single errors corrupting two b-bit bytes 

          1 mod 2 1 ;( 1),i iB B i k= + −  bE                                                                                                                                                                                                  (6) 

          2 mod 2 1;( 1),B B k += + −  b

j j E i j                                                                                                                          (7) 

        E1, E2{ 2r (mod 2b ‒ 1): 0 ≤ r ≤ b ‒ 1} 

Table 1. Number of coefficients for some byte lengths. 

 b = 8 b = 9 b = 10 b = 11 b = 12 b = 13 b = 14 b = 15 b = 16 

Theoretical bound 0 1 1 2 3 4 5 8 10 

Computer-search result 0 1 1 1 2 2 3 3 3 

 

  Table 2. Coefficients for codes with parameters b = 16, 32 and k ≤ 32. 

b = 16 

19 213 537      

b = 32 

19 213 377 667 1905 3927 4387 6251 

8885 9603 11453 14335 14707 22503 25869 29893 

31985 36665 43669 67325 69505 69705 81097 86685 

95069 98609 103547 122631 132627 159785 195623 210897 

 

 

                           

 

    Fig. 1. Bit-width of one ST entry. 
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To make this procedure more clear, let us consider it on example of the (18, 9) code. 

(Remark: the ST for this code has |ξ| = 360 entries, and hence, it will be shown partially.) 

Example 1. Let b = 9, k = 1 and C1    = 19. Now, suppose that we want to transmit 9 bits of 

data, B1 = 1110100012 = 465. In that case, the integer value of the check-byte will be equal to 

+1 219 465 511 = 148 = 010010100
1

(mod 2 1) (mod )
k b

k i ii
B C B

=
=  − =   

and the codeword will have 18 bits, x = (B1, B2) = (1110100012, 0100101002) = (465, 148). 

Scenario 1: Assume that during data transmission an error on the 8th bit has occurred, y = 

(1110100112, 0100101002) = (467, 148). In that case, using the expression (2), the decoder will 

calculate the syndrome S 

+1 19 467 148 511 38
1

(mod 2 1) (mod )
k

i i ki=
=  − − =  − = bS C B B  

and conclude that the value S   =   38 indicates an error within the first byte (Table 3). On the basis 

of this information, it will perform the error correcting by using 

1 1 1 2 1 467 509 511 465.(mod ) = (mod ) =B B= + − +bE  

Scenario 2: Suppose that during data transmission an error occurs on the 9th and 14th bits, 

y = (1110100002, 0100001002) = (405, 111). As in the previous case, the decoder will calculate 

+1 19 464 132 511 508
1

(mod 2 1) (mod )
k

i i ki=
=  − − =  − = bS C B B  

and conclude that the value S   =   508 indicates an error within the first and second byte (Table 3). 

As a result, the following procedure will take place 

1 1 1

2 2 2

2 1 464 1 511 465

2 1 132 16 511 148.

(mod ) = (mod ) =

(mod ) = (mod ) =

b

b

B B

B B

= + − +

= + − +

E

E
 

 

4. Evaluation and Comparison with DEC-BCH Codes 

Among all DEC codes, the most studied are DEC-BCH codes [25]-[30]. One of the reasons 

for this lies in their redundancy, which is very close to the minimum. In this respect, DEC-BCH 

codes outperform the presented ones as well. From Table 4 we see that, for practical data lengths 

Table 3. The ST for the (18, 9) code. 

 Element of ξ i E1 j E2     

 

 

 Element of ξ i E1 j E2   Element of ξ  i E1 j E2 

1 1 2 1 0 0 37 44 1 507 2 479 215 306 1 495 2 2 
2 2 2 2 0 0 38 45 1 1 2 64 216 307 1 4 2 383 
3 3 1 510 2 495 39 46 1 509 2 8 217 308 1 495 2 4 
4 4 2 4 0 0 40 48 1 495 2 255 218 309 1 64 2 503 
5 5 1 383 2 128 41 49 1 495 2 256 219 310 1 256 2 64 

                  

32 37 1 509 2 510 210 301 1 64 2 495 356 506 1 128 2 383 
33 38 1 509 0 0 211 302 1 495 2 509 357 507 2 507 0 0 
34 39 1 509 2 1 212 303 1 495 2 510 359 508 1 1 2 16 
35 40 1 509 2 2 213 304 1 495 0 0 359 509 2 509 0 0 
36 42 1 509 2 4 214 305 1 495 2 1 360 510 2 510 0 0 
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up to 2048 bits, the proposed codes require 2 to 4 check bits more than DEC-BCH codes. This 

result, however, can be considered satisfactory if we take into account the redundancy of other 

DEC codes (e.g. DEC-OLS codes).  

When it comes to the processing of data bits, the presented codes have a clear advantage 

over DEC-BCH codes. This is confirmed by the fact that the fully parallel decoder uses log2 K/b 

+ 2  log ξ + 6 operations per K-bit data word [19], while the optimized DEC-BCH decoder 

performs 4·√K + 24 operations [31], [32] (Table 5). An additional drawback of DEC-BCH 

codes is that they use FF operations, which are not supported by modern processors. As already 

stated, this means that DEC-BCH codes must be implemented in dedicated hardware, which 

increases the cost of the network. On the other hand, the presented codes use integer and LUT 

operations, which are supported by all processors. Thanks to this, they have the potential to be 

implemented "for free" (in software). In order to show this, we will rely on the results from [21], 

[23]. In the first paper, for example, it was shown that any theoretical decoder, implemented on 

the four-core processor, needs one second to decode 

9

4
1

3.5 10 128
=

9· + 29· + 4

( )  k
G

k n
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             (8) 

Table 4. Check-bit lengths of the proposed, DEC-BCH and DEC-OLS codes. 

Codes 
Data word length (bits) 

32 64 128 256 512 1024 2048 

DEC-BCH codes 12 14 16 18 20 22 24 

DEC-OLS codes 24 32 48 64 100 128 184 

Proposed codes 14 17 19 21 24 26 28 

 
Table 5. Comparison of the proposed and DEC-BCH codes. 

Main characteristics Proposed codes DEC-BCH codes 

Error correction capabilities 

Correction of 

single errors in  

one or two bytes 

Correction of  

single and double 

errors 

Processing of data bits 
Integer and LUT 

operations 

FF 

operations 

Number of check bits per 

256/512/1024-bit data word 
21/24/26 18/20/22 

Number of 

decoding operations per 

256/512/1024-bit data word 

31/34/37 88/115/152 

Memory requirements per 

256/512/1024-bit data word 
1.9/7.4/29.2 MB None 

Type of implementation Software Hardware 
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bits. On the other hand, the analysis from [23] has shown that any theoretical decoder, 

implemented on the six-core processor, requires one second to decode 

9

6
1

3.3 10 192·
=

9.5· + 35· + 3

( )  k
G

k n


data bits. Now, if we apply these results to the presented theory, we can easily be convinced that 

even for smaller values of k, the proposed decoder achieves the throughput above the operational 

speed of 10G networks (Table 6). Intuitively, it can be concluded that better results can be 

obtained using longer codes and/or more powerful processor [33]. The only prerequisite, in this 

regard, is that the size of the syndrome table ( 3 2 2+ ( +1)b log k     ξ bits) does not exceed 

the capacity of the last level cache (for more details, see [20]). 

 

5. Conclusion 

This paper has presented a new class of integer codes. It has been shown that the presented 

codes have two important features: first, they can correct single errors within one or two b-bit 

bytes, and second, they have the ability to be implemented "for free" (in software). Thanks to 

this, they can be viewed as a low-cost alternative to DEC-BCH codes, especially in ONs with 

low error rates. 
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