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A b s t r a c t. We investigate the algebraic distance between closed and orthogonaly com-
plemented submodules of a Hilbert C∗-module, which is defined as the norm of a difference
of corresponding orthogonal projections. Some results are proved using 2×2 decompositions
of adjointable operators.
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1. Motivation

Let X,Y be subspaces of a Banach space M . The distance between subspaces
X and Y is introduced in the following way (see [1], [2], [6] and many other):

θ(X,Y ) = sup

!
sup

x∈X,"x"=1
dist(x, Y ), sup

y∈Y,"y"=1
dist(y,X)

"
.

If M is Hilbert space, then

θ(X,Y ) = !PX − PY !, (1.1)
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where PX is the orthogonal projection on the closure of X . This topic is widely
investigated, both in finite and infinite dimensional case. For example, it is used in
describing convergence properties of closed operators, and continuity properties of
generalized inverses of operators on Banach or Hilbert spaces.

The proof of the equality (1.1) depends on specific properties of Hilbert spaces.
In this paper we investigate the value !PX − PY ! assuming that M is a Hilbert

C∗-module, X,Y are closed submodules of M such that there exist orthogonal pro-
jections PX and PY . Hilbert C∗-modules are Banach spaces which extend the notion
of Hilbert spaces. Some important properties of Hilbert spaces are not valid for gen-
eral Hilbert C∗-modules, such as the existence of the orthogonal complement of the
closed submodule, and the standard form of the Pithagorean theorem. For this rea-
son, the value !PX − PY ! will be called the algebraic distance between closed and
orghogonally complemeted submodules X and Y .

It seems that distance between submodules is not investigated. We prove some
results in this setting, and thus extend some well-known results for Hilbert spaces.

2. Hilbert C∗-modules

The main references for Hilbert C∗-modules are [9] and [12]. We present results
that we will use later.

Let A be a complex C∗-algebra and let M be a complex right A- Hilbert C∗-
module. The A-vauled inner product in M is denoted by 〈·, ·〉, and the norm satisfies
!x! = !〈x, x〉!1/2 for every x ∈ M. Then (M, ! · !) is a Banach space.

Let N also be a right A- Hilbert C∗-module. The mapping T : M → N is
an operator, provided that it is both linear and A-linear. T is adjointable, if there
exists an operator T ∗ : N → M such that for every x ∈ M and y ∈ N we
have 〈Tx, y〉 = 〈x, T ∗y〉, and T ∗ is the unique adjoint of T . If T is adjointable,
then both T and T ∗ are bounded. The set of all adjointable operators from M to
N is denoted by Hom∗

A(M,N ). Then Hom∗
A(M, N) is a Banach space with the

usual operator norm. Particularly, EM = Hom∗
A(M,M) is the set of all adjointable

endomorphisms on M, which is a C∗-algebra.
If T ∈ Hom∗

A(M, N), then Im(T ) and Ker(T ) denote the image and the kernel
of T .

In [12, Theorem 2.3.3] the following result is proved.

Lemma 2.1. If T ∈ Hom∗
A(M, N) is an operator such that Im(T ) is closed,

then Im(T ∗) is also closed and we have the following orthogonal decompositions
with respect to closed submodules:

M = Im(T ∗)⊕Ker(T ), N = Im(T )⊕Ker(T ∗).



Algebraic distance between submodules 77

In general, the question of the existence of topological complements and partic-
ularly orthogonal complements of closed submodules in a Hilbert C∗-module is not
trivial.

An operator P ∈ EM is an orthogonal projection, if P 2 = P and M = Im(P )⊕
Ker(P ). It is easy to see that in this case P is selfadjoint.

Now, we need the result [12, Proposition 2.1.3].

Lemma 2.2. If T ∈ EH
M, then the following statements are equivalent:

(1) T ≥ 0 in EM;

(2) For every x ∈ M we have 〈Tx, x〉 ≥ 0 in A.

Lemma 2.3. If P ∈ EM is a selfadjoint projection, then P ∈ E+
M.

PROOF. Take x ∈ M arbitrary. Then we have 〈Px, x〉 = 〈Px, Px〉 ∈ A+,
implying that P ∈ E+

M.

If P is the orthogonal projection in EM with Im(P ) = X , we write P ≡ PX .

If T ∈ Hom∗
A(M, N), and PX ∈ EM and PY ∈ EN are orthogonal projections,

then

T = PY TPX + PY T (I − PX) + (I − PY )TPX + (I − PY )T (I − PX)

=

#
T11 T12

T21 T22

$
:

#
X
X⊥

$
→

#
Y
Y ⊥

$
,

where Tjk are all adjointable on corresponding closed submodules. On the other
hand, it is easy to see that if all Tjk are adjointable, then T is adjointable and

T ∗ =

#
T ∗
11 T ∗

21

T ∗
12 T ∗

22

$
:

#
Y
Y ⊥

$
→

#
X
X⊥

$
.

3. Generalized inverses

Let B be a unital C∗-algebra. BqNil, B+, BH and BN , respectively, denote the
set of all quasinilpotent, positive, selfadjoint and normal elements in B.

An element a ∈ B is generalized Drazin invertible, if and only if there exists
(necessarily unique) ad ∈ B satisfying

adaad = ad, aad = ada, a(1− aad) ∈ BqNil,

and such ad is the generalized Drazin inverse of a. The set of all generlized Drazin
invertible elements in B is denoted by Bd. It is well-known that a ∈ Bd if and only
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if 0 /∈ accσ(a). Here accσ(a) denotes the set of all accumulation points of the
spectrum σ(a).

An element a ∈ B is Moore-Penrose invertible, if there eixsts (necessarily unique)
a† ∈ B satisfying

aa†a = a, a†aa† = a†, (aa†)∗ = aa†, (a†a)∗ = a†a,

and such a† is the Moore-Penrose inverse of a. It is well-known that a ∈ B† if and
only if a ∈ aBa [5]. If B = EM, then T ∈ E†

M if and only if Im(T ) is closed ([14]).
The last statemenet follows also from the orthogonal decompositions of M and N .
If we assume that Im(T ) is closed, then

T =

%
T1 0

0 0

&
:

%
Im(T ∗)

Ker(T )

&
→

%
Im(T )

Ker(T ∗)

&
,

with T1 invertible, and then

T † =

%
T−1
1 0

0 0

&
:

%
Im(T )

Ker(T ∗)

&
→

%
Im(T ∗)

Ker(T )

&
,

as it is used in [4].

The following result is proved in [8, Proposition 2.11].

Lemma 3.1. If a ∈ BN , then a ∈ B† if and only if a ∈ Bd.

Using properties of generalized inverses, we prove the following result.

Lemma 3.2. Let T ∈ EH
M. Then Im(T ) is closed if and only if 0 /∈ accσ(T ).

PROOF. If T ∈ EH
M and Im(T ) is closed, then we have H = Im(T ) ⊕ Ker(T )

and this decomposition completely reduces T . Thus,

T =

%
T1 0

0 0

&
:

%
Im(T )

Ker(T )

&
→

%
Im(T )

Ker(T )

&

where T1 is invertible. If Ker(T ) = {0}, then T = T1 is invertible and 0 /∈ σ(A). If
Ker(T ) ∕= {0}, then σ(T ) = σ(T1) ∪ {0}. Since 0 /∈ σ(T1), we get 0 /∈ accσ(T ).

On the other hand, if T ∈ EH
M and 0 /∈ σ(T ), then T ∈ Ed

M so T ∈ E†
M, implying

that Im(T ) is closed.

Corollary 3.1. If T ∈ EH
M is singular with Im(T ) closed, then 0 is a eigenvalue

of T .
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The following result is proved in [8, Theorem 2.4.].

Lemma 3.3. For a ∈ B the following hold:

a ∈ B† ⇐⇒ a∗ ∈ B† ⇐⇒ aa∗ ∈ B† ⇐⇒ a∗a ∈ B†.

Since T ∈ E†
M if and only if Im(T ) is closed, we have the next result.

Lemma 3.4. For T ∈ EM the following hold:

Im(T ) is closed ⇐⇒ Im(T ∗) is closed ⇐⇒ Im(TT ∗) is closed

⇐⇒ Im(T ∗T ) is closed.

4. Algebraic distance between orthogonaly complemented submodules

We continue with investigating orthogonal projections on Hilbert C∗-modules. If
PX , PY are ortogonal projections, then we take

SX,Y = PXPY (PXPY )
∗ = PXPY PX .

If S ∈ E+
M, then let

µ(S) = minσ(S).

Consider the following reductions of operators:

SX = SX,Y ↾X : X → X and SY = SY,X ↾Y : Y → Y.

Define
Λ(X,Y ) = min{µ(SX), µ(SY )}.

First we prove the following lemma on decompositions of orthogonal projections.
The proof is a matter of simple computation.

Lemma 4.1. Let PX , PY be orthogonal projections in EM. Then the following
hold:

(1) PX =

%
I 0

0 0

&
:

#
X
X⊥

$
→

%
X

X⊥

&

and

PY =

%
M1 M2

0 0

&
:

%
X

X⊥

&
→

%
Y

Y ⊥

&
,

where M1 ∈ Hom∗
A(X,Y ) and M2 ∈ Hom∗

A(X
⊥, Y ).
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(2) PY = P ∗
Y =

#
M∗

1 0
M∗

2 0

$
:

#
Y
Y ⊥

$
→

#
X
X⊥

$
.

(3) PY =P ∗
Y =PY P

∗
Y =

%
M1M

∗
1 +M2M

∗
2 0

0 0

&
=

%
I 0

0 0

&
:

%
Y

Y ⊥

&
→

%
Y

Y ⊥

&
,

with M1M
∗
1 +M2M

∗
2 = I .

(4) PY = P ∗
Y = P ∗

Y PY =

%
M∗

1M1 M∗
1M2

M∗
2M1 M∗

2M2

&
:

%
X

X⊥

&
→

%
X

X⊥

&
.

The following result can be found in [6, page 33], and it is also a consequence of
a direct computation involving projections on a Banach space.

Lemma 4.2. Let PX , PY be projections in EM. Take

R = (PX − PY )
2,

U ′ = PY PX + (I − PY )(I − PX),

V ′ = PXPY + (I − PX)(I − PY ).

Then the following hold:
(1) PXR = RPX , PY R = RPY .
(2) (PX − PY )

2 + (I − PX − PY )
2 = I .

(3) U ′PX = PY PX = PY U
′, PXV ′ = PXPY = V ′PY .

Now, we prove the following result (see [6, page 56] or [3] for Hilbert space
operators).

Theorem 4.1. Let PX , PY be orthogonal projections in EM. Then:
(1) !PX − PY ! ≤ 1.
(2) If !PX − PY ! < 1, then there exists a unitary U ∈ EM such that

PY = UPXU∗.

PROOF. (1) From Lemma 4.1 we have that M1M
∗
1 + M2M

∗
2 = I and conse-

quently max{!M1M
∗
1 !, !M2M

∗
2 !} ≤ 1. Now we get

0 ≤ (PX − PY )(PX − PY )
∗

= PX − PXP ∗
Y PY − P ∗

Y PY PX + P ∗
Y PY

=

%
I −M∗

1M1 0

0 M∗
2M2

&
:

%
X

X⊥

&
→

%
X

X⊥

&
.
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From Lemma 2.2 we obtain 0 ≤ I −M∗
1M1 ≤ I and !I −M∗

1M1! ≤ 1. Also,
!M∗

2M2! = !M2M
∗
2 ! ≤ 1. Since

σ
'
(PX − PY )(PX − PY )

∗
(
= σ(I −M∗

1M1) ∪ σ(M∗
2M2),

we get that

!PX − PY !2 = max{!I −M∗
1M1!, !M∗

2M2!} ≤ 1.

(2) Take R = (PX − PY )
2 (as in Lemma 4.2). We have

I −R =

%
M∗

1M1 0

0 I −M∗
2M2

&
:

%
X

X⊥

&
→

%
X

X⊥

&
.

Since !R! < 1 we know that I −R is invertible.
Now, we have a short proof. If U = U ′(I − R)−1/2 then PY = UPXU∗, as it is

proved in [6].
However, we can finish the proof independently from the results in [6]. We have

U =

%
(M∗

1M1)
1/2 −M∗

1M2(I −M∗
2M2)

−1/2

M∗
2M1(M

∗
1M1)

−1/2 (I −M∗
2M2)

−1/2

&
.

Notice that the obtained result from (1) implies !I − M∗
1M1! < 1, so we get that

1− µ(M∗
1M1) < 1, and M∗

1M1 is invertible. Since

!I −M1M
∗
1 ! = !M2M

∗
2 ! = !M∗

2M2! < 1,

we have that M1M
∗
1 is invertible. Thus, M1 is invertible and it is now trivial to see

that PY = UPXU∗ holds.

Last lines of the previous proof imply the following result, knowing that M1 ∈
Hom∗

A(X,Y ).

Corollary 4.1. If PX and PY are orthogonal projections in EM with

!PX − PY ! < 1,

then there exists an isomorphism from X onto Y .

The previous result is proved in [6, pages 199–200] in the setting of Banach
spaces provided that at least one of X,Y is a finite dimensional subspace. In the case
of closed subspaces of a Hilbert space, the results is proved in [1, page 70].
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Theorem 4.2. Let PX , PY be orthogonal projections in EM. Then

!PX − PY !2 = 1− Λ(X,Y ).

PROOF. We use decompositions in Lemma 4.1 and Theorem 4.1. We consider
several cases.

Case 1. Let X⊥ = {0} and Y ∕= {0} (or the opposite way). We have

PX = I, PY =

%
M1

0

&
: X →

%
Y

Y ⊥

&
, SX,Y = M∗

1M1 : X → X,

SY,X = PY PXP ∗
Y =

%
M1M

∗
1 0

0 0

&
=

%
I 0

0 0

&
:

%
Y

Y ⊥

&
→

%
Y

Y ⊥

&
,

SX = M∗
1M1, SY = I.

Since SX,Y = PXPY PX and Y ⊥ ∕= {0}, we conclude that SX,Y is singular, i.e.
M∗

1M1 is singular. Thus,

Λ(X,Y ) = Λ(M, Y ) = min{µ(M∗
1M1), µ(I)} = 0.

On the other hand,
!PX − PY ! = !I − PY ! = 1.

Case 2. If X = Y = M, then the equality trivially holds.

Case 3. Let X⊥ ∕= {0} ∕= Y ⊥. We have

SX,Y = PXPY PX = PXP ∗
Y PY PX =

%
M∗

1M1 0

0 0

&
:

%
X

X⊥

&
→

%
X

X⊥

&

and

SY,X = PY PXPY = PY PXP ∗
Y =

%
M1M

∗
1 0

0 0

&
:

%
Y

Y ⊥

&
→

%
Y

Y ⊥

&
.

Since X,Y are non-trivial, we have that

σ(SX,Y ) = σ(M∗
1M1) ∪ {0} = σ(M1M

∗
1 ) ∪ {0} = σ(SY,X).
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Using previous equality of spectrums, Lemma 3.2 and Lemma 3.4, we have the
following:

Im(SX,Y ) is closed ⇐⇒ 0 /∈ accσ(SX,Y ) ⇐⇒ 0 /∈ accσ(M∗
1M1)

⇐⇒ Im(M∗
1M1) is closed ⇐⇒ Im(M1) is closed ⇐⇒ Im(M1M

∗
1 ) is closed

⇐⇒ 0 /∈ accσ(M1M
∗
1 ) ⇐⇒ 0 /∈ accσ(SY,X) ⇐⇒ Im(SY,X) is closed.

Notice that

SX = M∗
1M1 : X → X, SY = M1M

∗
1 : Y → Y.

We consider several subcases.
Subcase 3.1. Assume that Im(SX,Y ) is not closed. Then Im(M∗

1M1) is not
closed, so Im(M1) is not closed. It follows that M1 is not left invertible nor right
inveritble, implying that both M∗

1M1 and M1M
∗
1 are singular with non-closed ranges.

Thus, 0 ∈ accσ(M∗
1M1) = accσ(M1M

∗
1 ) and Λ(X,Y ) = 0. On the other hand,

we have
!PX − PY ! = max{!I −M∗

1M1!, !M∗
2M2!}

= max{1− µ(M∗
1M1), !M∗

2M2!}

= 1 = 1− Λ(X,Y ).

Subcase 3.2. Suppose that Im(SX,Y ) is closed. Again we have several subcases.
Subcase 3.2.1. Assume that SX = M∗

1M1 and SY = M1M
∗
1 are both invertible.

We get 0 /∈ σ(M∗
1M1) = σ(M1M

∗
1 ) and

Λ(X,Y ) = µ(M∗
1M1) = µ(M1M

∗
1 ) > 0.

Knowing that M1M
∗
1 +M2M

∗
2 = I , we calculate as follows:

!PX − PY ! = max{!I −M∗
1M1!, !M∗

2M2!}

= max{1− µ(M∗
1M1), !M∗

2M2!}

= max{1− µ(M1M
∗
1 ), !M∗

2M2!}

= max{!I −M1M
∗
1 !, !M∗

2M2!}

= !M2M
∗
2 !

= !I −M1M
∗
1 !

= 1− µ(M1M
∗
1 )

= 1− µ(M∗
1M1)

= 1− Λ(X,Y ).
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Subcase 3.2.2. Assume that SX = M∗
1M1 is singular. Then Λ(X,Y ) = 0,

0 ∈ σ(M∗
1M1), and we calculate as follows:

!PX − PY ! = max{!I −M∗
1M1!, !M∗

2M2!}

= max{1− µ(M∗
1M1), !M∗

2M2!}

= 1 = 1− Λ(X,Y ).

Subcase 3.2.3. If we assume that SY is singular, then we simply change places
of X and Y in Subcase 3.2.2, and obtain the requested result.

Previous result is an extension of [13, Lemma 2.2], where a finite dimensional
case is considered. If X,Y are subspaces of Cn with the same dimension, then our
definition of Λ(X,Y ) is equal to the smallest non-zero eigenvalue of SX,Y and this
is exactly cos2 ϕmax(X,Y ), where ϕmax is the maximum canonical angle between
X and Y . This means that !PX − PY ! = sinϕmax.

We prove the following result (see [1, pages 70-71] for Hilbert spaces).

Theorem 4.3. Let PX , PY be orthogonal projections in EM. Then

!PX − PY ! = max
)**(I − PX)PY

**,
**(I − PX)PY

**
+

= max
)**(I − PX) ↾Y

**,
**(I − PY ) ↾X

**
+
.

PROOF. Notice that in Theorem 4.1 we proved that

!PX − PY !2 = max{!I −M∗
1M1!, !M∗

2M2!}.

Also

I − PY = I − P ∗
Y PY =

%
I −M∗

1M1 −M∗
1M2

−M∗
2M1 I −M∗

2M2

&
:

%
X

X⊥

&
→

%
X

X⊥

&
,

and consequently %
I −M∗

1M1 0

0 0

&
= PX(I − PY )PX .

Since all operators are positive, we have

!I −M∗
1M1! = !PX(I − PY )PX! = !(I − PY )PX!2.
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In the same way we have

(I − PX)PY (I − PX) = (I − PX)P ∗
Y PY (I − PX) =

%
0 0

0 M∗
2M2

&
,

and consequently

!M∗
2M2! = !(I − PX)PY (I − PX)! = !(I − PX)PY !2.

To prove the second part of this theorem, we take short notations:

T = (I − PY ) ↾X=

%
I −M∗

1M1

−M∗
2M1

&
, T ∗ =

,
I −M∗

1M1 −M∗
1M2

-
,

S = (I − PY )PX =

%
I −M∗

1M1 0

−M∗
2M1 0

&
, S∗ =

%
I −M∗

1M1 −M∗
1M2

0 0

&
,

and obtain
T ∗T =

,
(I −M∗

1M1)
2 +M∗

1M2M
∗
2M1

-

and

S∗S =

%
(I −M∗

1M1)
2 +M∗

1M2M
∗
2M1 0

0 0

&
.

Using the connection between the norm and the spectrum of a positive operator,
we obtain

!T!2 = !T ∗T! = !S∗S! = !S!2.

If we assume that M is a Hilbert space and x ∈ X , !x! = 1, then !(I−PY )x! =
dist(x, Y ). Then

!(I − PY ) ↾X ! = sup
x∈X,"x"=1

dist(x, Y )

and
!(I − PX) ↾Y ! = sup

y∈Y,"y"=1
dist(y,X).

Thus, Theorem 4.3 implies the natural definition of the distance between sub-
spaces in a Banach space (as it is concluded in [1]). However, the standard form
of the Pithagorean theorem does not hold in a general Hilbert C∗-module (see [11,
Example 2.7]).

Thus, if X,Y are closed and orthogonaly complemented submodules of M, then
it is natural to say that !PX − PY ! is the algebraic distance between X and Y .
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5. Adjointable oblique projections

In this section we consider oblique projections which have their adjoints. If X

and Y are closed submodules of M such that X
•
+ Y = M (the sum is topological

and not necessarily orthogonal), then PX,Y denotes the projection from M onto X
parallel to Y . Notice that PX,Y is bounded by the closed graph theorem, but it is not
necessary adjointable [12, page 22].

If X,Y are closed submodules of M such that M = X ⊕ Y and PX,Y is ad-
jointable, then let

TX,Y = PX,Y P
∗
X,Y .

We prove the following result, which is an extension of some results from [10]
and [13, Lemma 2.1]. We use card(Z) to denote the cardinality of the set Z.

Theorem 5.1. Let X,Y be non-trivial closed submodules M, such that M =

X
•
+ Y and PX,Y , PY,X are adjointable operators. Then PX , PY exist and the fol-

lowing holds:
(1) 1 /∈ σ(SY,X);
(2) The mapping λ /→ (1 − λ)−1 = ν is a bijection from σ(SY,X) \ {0} onto

σ(TY,X) \ {0}.
(3) If λ and ν are the same as in the part (2), then

card
'
[λ, !SY,X!] ∩ σ(SY,X)

(
= card

'
[ν, !TY,X!] ∩ σ(TY,X)

(
.

(4) (1− !PXPY !2)!PY,X!2 = 1.

PROOF. (1) We recall notations and results form Lemma 4.1 and Theorem 4.1.
Since PX,Y is adjointable and has a closed range, we have the orthogonal decompo-
sition of closed submodules

M = Im(P ∗
X,Y )⊕Ker(PX,Y ) = Im(P ∗

X,Y )⊕ Y.

Thus, Y has the orthogonal complement, so Im(P ∗
X,Y ) = Y ⊥ and PY exists. From

the same reason we have Im(P ∗
Y,X) = X⊥ and PX exists.

Notice that

SY,X =

%
M1M

∗
1 0

0 0

&
:

%
Y

Y ⊥

&
→

%
Y

Y ⊥

&
.

Since Im(PY,X) = Y and Ker(PY,X) = X , we conclude that

PY,X =

%
0 P1

0 0

&
:

%
X

X⊥

&
→

%
Y

Y ⊥

&
,
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where P1 ∈ Hom∗
A(X

⊥, Y ) is invertible. From PY,XPY = PY we have

PY,XP ∗
Y =

%
P1M

∗
2 0

0 0

&
=

%
I 0

0 0

&
:

%
Y

Y ⊥

&
→

%
Y

Y ⊥

&
.

We conclude that M2 is invertible and P1 = (M∗
2 )

−1. Hence

PY,X =

%
0 (M∗

2 )
−1

0 0

&
:

%
X

X⊥

&
→

%
Y

Y ⊥

&
, P ∗

Y,X =

%
0 0

M−1
2 0

&
:

%
Y

Y ⊥

&
→

%
X

X⊥

&
.

We obtain the following

TY,X =

%
(M2M

∗
2 )

−1 0

0 0

&
:

%
Y

Y ⊥

&
→

%
Y

Y ⊥

&
.

Since X,Y are non-trivial, we have σ(SY,X) = σ(M1M
∗
1 ) ∪ {0} and

σ(TY,X) = σ
.
(M2M

∗
2 )

−1
/
∪ {0}.

Using M1M
∗
1 +M2M

∗
2 = I and invertibility of M2M

∗
2 , we obtain

!SY,X! = !M1M
∗
1 ! = !I −M2M

∗
2 ! = 1− µ(M2M

∗
2 ) < 1.

Thus, 1 /∈ σ(S).

(2) Let λ ∈ σ(SY,X) \ {0} be arbitrary. Then λ ∈ σ(M1M
∗
1 ). Since

M1M
∗
1 +M2M

∗
2 = I,

there exists the unique ξ ∈ σ(M2M
∗
2 ) such that λ = 1 − ξ. Obviously, there exists

the unique ν ∈ σ(M2M
∗
2 )

−1 such that ν−1 = ξ. Hence, (1− λ)ν = 1.

(3) Using the spectral mapping theorem for bijective functions x /→ x−1 (x > 0),
x /→ 1 − x (x ∈ R) and bijective correspondence between λ, ξ, ν > 0 established
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above, we compute as follows:

card
'
[ν, !TY,X!] ∩ σ(TY,X)

(

= card
',

ν, !(M2M
∗
2 )

−1!
-
∩ σ

.
(M2M

∗
2 )

−1
/(

= card
',

ξ−1, !(M2M2)
−1!

-
∩ σ

.
(M2M

∗
2 )

−1
/(

= card
',

µ(M2M
∗
2 ), ξ

-
∩ σ(M2M

∗
2 )
(

= card
',

µ(I −M1M
∗
1 ), 1− λ

-
∩ σ(I −M1M

∗
1 )
(

= card
',

1− !M1M
∗
1 !, 1− λ

-
∩ σ(I −M1M

∗
1 )
(

= card
',

λ, !M1M
∗
1 !

-
∩ σ(M1M

∗
1 )
(

= card
',

λ, !SY,X!
-
∩ σ(SY,X)

(
.

(4) Take λ = !SY,X! = !PXPY !2 and corresponding

ν = !TY,X! = !PY,X!2.

Thus, Theorem 5.1 is proved.
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