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ON CERTAIN SUMS OVER ORDINATES OF ZETA ZEROS III

ALEKSANDAR IVIĆ
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A b s t r a c t. The upper bound
! T

2

|G( 12 + it)|2 dt ≪ T log2 T

is proved, where initially G(s) =
"
γ>0

γ−s. Here γ denotes ordinates of complex zeros of the

Riemann zeta-function ζ(s). This coincides with the lower bound for the integral in question.

AMS Mathematics Subject Classification (2010): 11M06
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1. Introduction

This paper is a continuation of the author’s work [5] and the joint work [1]. It
deals with a mean square estimate for the function

G(s) :=
!

γ>0

γ−s (s = σ + it;σ, t ∈ R,σ > 1),
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where γ denotes ordinates of complex zeros of the Riemann zeta-function ζ(s). Here,
as usual, the zeros are counted with their respective multiplicities. For a comprehen-
sive account on ζ(s), the reader is referred to the monographs of E.C. Titchmarsh
[9] and the author [4]. The series for G(s) does not converge for Re s ! 1, but the
function itself possesses unconditionally analytic continuation at least to the region
Re s > −1. The mean square estimate

T log2 T ≪
" T

0

##G
$
1
2 + it

%##2 dt ≪ T log2 T
&

log log T (1.1)

was proved in [1]. The lower bound in (1.1) is new, and the upper bound improves
and rectifies the corresponding result of [5], whose proof was not complete. The
Vinogradov symbol f(x) ≪ g(x) (same as f(x) = O(g(x))) is defined in the usual
way: f(x) ≪ g(x) means that |f(x)| ! Cg(x) for x " x0, some constant C > 0,
provided that g(x) > 0 for x " x0.

The aim of this note is to improve the upper bound in (1.1). Efforts have been
made to keep the exposition as complete as possible. We shall prove

Theorem 1.1. We have

" T

0

##G
$
1
2 + it

%##2 dt ≪ T log2 T. (1.2)

Remark 1.1. The lower bound in (1.1) and the upper bound in (1.2) are both of
the form T log2 T , so it is plausible to conjecture that

" T

0

##G
$
1
2 + it

%##2 dt = (C + o(1))T log2 T (T → ∞) (1.3)

for some positive constant C. Proving (1.3), however, is out of reach at present.

2. Proof of Theorem 1.1

Instead of (1.2) it is sufficient to prove

I(T ) :=

" T

T/2

##G
$
1
2 + it

%##2 dt ≪ T log2 T, (2.1)

replace T by T2−j and sum the resulting expressions over O(log T ) values j =
1, 2, . . . .
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To start with a workable expression for G(12 + it) we proceed as in [5], using the
zero counting function

N(T ) :=
!

0<γ!T

1 =
T

2π
log

T

2π
− T

2π
+

7

8
+ S(T ) + f(T ), (2.2)

f(T ) ≪ 1

T
, f ′(T ) ≪ 1

T 2
, (2.3)

S(T ) =
1

π
arg ζ

$
1
2 + iT

%
=

1

π
Im

'
log ζ

$
1
2 + iT

%(
≪ log T. (2.4)

This is known as the Riemann – von Mangoldt formula (see [9] or [4]). Here the
argument of ζ(12 + iT ) is obtained by continuous variation along the straight lines
joining the points 2, 2+ iT , 1

2 + iT , starting with the value 0. If T is an ordinate of a
zero, then we set S(T ) = S(T + 0).

Let X be a parameter, to be chosen later, which satisfies 1 ≪ X ! T . Then we
write

G(s) =
!

γ!X

γ−s +R(s),

say, where on using (2.2) it follows that

R(s) =
!

γ>X

γ−s =

" ∞

X
x−s dN(x)

=

" ∞

X

x−s

2π
log

x

2π
dx+

" ∞

X
x−s d

$
S(x) + f(x)

%
.

Integrating by parts, we obtain

R(s) =
X1−s

2π(s− 1)
log

X

2π
+

X1−s

2π(s− 1)2
−X−s

$
S(X) + f(X)

%
(2.5)

+s

" ∞

X
x−s−1(S(x) + f(x)) dx.

Initially (2.5) is valid for for σ > 1, but it possesses meromorphic continuation for
all σ > 0, since S(x) ≪ log x. Henceforth we set s = 1

2 + it and choose

X =
T

log T
. (2.6)
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Then the contribution of the terms in the first line of (2.5) to I(T ) in (2.1) is

≪ X log2X

" T

T/2
t−2 dt+

T

X
log2X ≪ log3 T. (2.7)

Now we use Lemma 4 of the author’s paper [6], which says that

" T

0

####
" b

a
g(x)x−s dx

####
2

dt ! 2π

" b

a
g2(x)x1−2σ dx (s = σ + it, T > 0, a < b),

if g(x) is a real-valued, integrable function on [a, b], a subinterval of [2,∞), which is
not necessarily finite. With s = 1

2 + it, A = X, b = +∞ this gives

" T

T/2

####s
" ∞

X
x−s−1

$
S(x) + f(x)

%
dx

####
2

dt

≪ T 2

" ∞

X

$
S2(x) + f2(x)

%
x−2 dx (2.8)

≪ T 2X−1 log logX ≪ T log T log log T.

Here we used the elementary bound

" X

1
S2(x) dx ≪ X log logX.

An elementary calculation shows that

" 1

−1
(1− |y|)e−2πixy dy =

)sinπx
πx

*2
.

Therefore on applying the Fourier inversion one has

1

2

" ∞

−∞
e2πixy

+
sinπx

πx

,2

dx =

-
1− |y|, if |y| ! 1,

0, if |y| > 1.
(2.9)

To estimate the contribution of
.

0<γ!X

γ−s to I(T ) in (2.1) we use (2.9) and the fact

that

1 ! π2

4

+
sin πt

2T
πt
2T

,2

(|t| ! T ).
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We obtain

" T

T/2

###
!

0<γ!X

γ−1/2−it
###
2
dt ≪

" T

T/2

+
sin πt

2T
πt
2T

,2 ###
!

0<γ!X

γ−1/2−it
###
2
dt

!
!

0<γ,γ′!X

(γγ′)−1/2

" ∞

−∞

+
sin πt

2T
πt
2T

,2

eit log γ/γ
′
dt,

where both γ and γ′ denote ordinates of zeta-zeros, counted with their respective
multiplicities. In the last integral we make the change of variable t = 2Tx and apply
(2.9) with

y =
T

π
log

γ

γ′

to obtain
" T

T/2

###
!

0<γ!X

γ−1/2−it
###
2
dt ≪ T

!

0<γ,γ′!X,|T
π
log γ

γ′ |!1

(γγ′)−1/2 = T
!

(T ), (2.10)

say. By symmetry, the portions of
.

(T ) in which γ > γ′ and γ < γ′ are equal. Thus
we have to distinguish only the cases γ′ > γ and γ′ = γ. In the latter case we have a
contribution which is !

0<γ!X

m(β + iγ)

γ
, (2.11)

where m(ρ) denotes the multiplicity of the zeta-zero ρ = β + iγ. Let

N∗(T ) :=
!

0<γ!T

m(β + iγ).

Then if we can show that
N∗(T ) ≪ N(T ), (2.12)

by partial summation and (2.12) it easily follows that the sum in (2.11) is ≪ log2 T ,
which suffices for (2.1). But A. Fujii (Theorem 3 of [2]) has shown that

Nj(T ) ! CN(T )e−Aj (A,C > 0, j " j0), (2.13)

where
Nj(T ) :=

!

0<γ!T,m(β+iγ)=j

1.
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M.A. Korolev [7] later found explicit values of A and C in (2.13). Using (2.13) one
has

N∗(T ) = O(N(T )) +

O(log T )!

j=j0

jNj(T ) ≪ N(T ) +N(T )

∞!

j=1

je−Aj ≪ N(T ),

since the above series is clearly convergent.

It remains to deal with the case when γ′ > γ in
.

(T ) in (2.10). If γ′ > γ, then
the condition

T

π
log

γ′

γ
! 1

implies, for T " T0,

γ < γ′ ! eπ/Tγ !
)
1 +

2π

T

*
γ ! γ +

2π

log T
,

in view of (2.6). It transpires that γ′ ∼ γ and using (2.2)–(2.4)we have
!

(T ) ≪
!

0<γ!X,γ<γ′!γ+(2π)/ log T

1

γ
(2.14)

=
!

0<γ!X

1

γ

)
N(γ +

2π

log T
)−N(γ)

*

≪
!

0<γ!X

1

γ

)
1 + S(γ +

2π

log T
)− S(γ)

*
.

To bound the last sum in (2.14) we invoke the estimate
!

0<γ!Q,γ+a>0

S(γ + a) ≪ Q logQ (0 ! |a| ! Q, a ∈ R) (2.15)

of A. Fujii [3]. Hence, by partial summation, (2.15) yields
!

(T ) ≪ log2X +
1

X
X logX +

" X

1

x log x

x2
dx ≪ log2 T. (2.16)

Inserting (2.16) in (2.10) we complete the proof of Theorem 1.1.

Concerning (2.15) Fujii even conjectures that, for any given α > 0 and T → ∞
one has

!

0<γ!T

S

+
γ − 2πα

log T/(2π)

,
=

T

2π

/" α

0

)sinπt
πt

*2
dt+ o(1)

0
.

This is closely related to H.L. Montgomery’s pair correlation conjecture [8] for the
distribution of the zeros of ζ(s).
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