

Serbian Ceramic Society Conference ADVANCED CERAMICS AND APPLICATION IX New Frontiers in Multifunctional Material Science and Processing

Serbian Ceramic Society Institute of Technical Sciences of SASA Institute for Testing of Materials Institute of Chemistry Technology and Metallurgy Institute for Technology of Nuclear and Other Raw Mineral Materials

PROGRAM AND THE BOOK OF ABSTRACTS

Serbian Academy of Sciences and Arts, Knez Mihailova 35 Serbia, Belgrade, 20-21. September 2021. Serbian Ceramic Society Conference ADVANCED CERAMICS AND APPLICATION IX New Frontiers in Multifunctional Material Science and Processing

Serbian Ceramic Society Institute of Technical Science of SASA Institute for Testing of Materials Institute of Chemistry Technology and Metallurgy Institute for Technology of Nuclear and Other Raw Mineral Materials PROGRAM AND THE BOOK OF ABSTRACTS

Serbian Academy of Sciences and Arts, Knez Mihailova 35 Serbia, Belgrade, 20-21. September 2021 **Book title:** Serbian Ceramic Society Conference - ADVANCED CERAMICS AND APPLICATION IX Program and the Book of Abstracts

Publisher:

Serbian Ceramic Society

Editors:

Prof.dr Vojislav Mitić Dr Lidija Mančić Dr Nina Obradović

Technical Editors:

Ivana Dinić Marina Vuković

Printing:

Serbian Ceramic Society, Belgrade, 2021

Edition:

100 copies

CIP - Каталогизација у публикацији Народна библиотека Србије, Београд

666.3/.7(048) 66.017/.018(048)

SRPSKO KERAMIČKO DRUŠTVO. CONFERENCE ADVANCED CERAMICS AND APPLICATION : NEW FRONTIERS IN MULTIFUNCTIONAL MATE-RIAL SCIENCE AND PROCESSING (9 ;2021 ; BEOGRAD)

Program ; and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application IX : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 20-21. September 2021 ; [organized by] Serbian Ceramic Society ... [et al.] ; [editors Vojislav Mitić, Lidija Mančić, Nina Obradović]. - Belgrade : Serbian Ceramic Society, 2021 (Belgrade : Serbian Ceramic Society). - 93 str. : ilustr. ; 30 cm

Tiraž 100.

ISBN 978-86-915627-8-6

а) Керамика -- Апстракти б) Наука о материјалима -- Апстракти в) Наноматеријали -- Апстракти

COBISS.SR-ID 45804553

Dear colleagues and friends,

We have great pleasure to welcome you to the Advanced Ceramic and Application IX Conference organized by the Serbian Ceramic Society in cooperation with the Institute of Technical Sciences of SASA, Institute of Chemistry Technology and Metallurgy, Institute for Technology of Nuclear and Other Raw Mineral Materials and Institute for Testing of Materials.

It is nice to host you here in Belgrade in person. As you probably know, Serbia launched a vaccination campaign at the beginning of this year, so up to date more than 50 percent of the adult population has been vaccinated. Since there is no one statistic to compare the COVID19 outbreaks and fears for loved ones in different countries, we believe that we all suffer similarly during this pandemic. That is why we appreciate even more your positive attitude and readiness to travel in this uncertain time. We understand that some of you had to cancel your lectures in the last minute due to the travel limitation in your countries, but we hope that you will come next year. We deeply hope that the ACA IX Conference will be worth remembering, that you will respect all COVID-19 safety measures at SASA building, that you will have a nice time here and that ultimately you will return to your home safely. We are very proud that we succeeded in bringing the scientific community together again and fostering the networking and social interactions around an interesting program on emerging advanced ceramic topics. The chosen topics cover contributions from fundamental theoretical research in advanced ceramics, developing of multifunctional ceramic processing routes, etc.

Traditionally, ACA Conferences gather leading researchers, engineers, specialists, professors and PhD students trying to emphasize the key achievements which will enable the widespread use of the advanced ceramics products in the High-Tech industry, renewable energy utilization, environmental efficiency, security, space technology, cultural heritage, etc.

Serbian Ceramic Society was initiated in 1995/1996 and fully registered in 1997 as Yugoslav Ceramic Society, being strongly supported by American Ceramic Society. Since 2009, it has continued as the Serbian Ceramic Society in accordance with Serbian law procedure. Serbian Ceramic Society is almost the only one Ceramic Society in South-East Europe, with members from more than 20 Institutes and Universities, active in 16 sessions. Part of our members are also members of the Serbian Chapter of ACerS since 2019. Their activities in the organization of this conference is highly recognized. To them and all of you thanks for being with us here at ACA IX.

Prof. Dr Vojislav Mitić President of the Serbian Ceramic Society World Academy Ceramics Member European Academy of Sciences & Arts Member

Prof. Dr Olivera Milošević, President of the General Assembly of the Serbian Ceramic Society Academy of Engineering Sciences of Serbia Member

Conference Topics

- Basic Ceramic Science & Sintering
- Nano-, Opto- & Bio-ceramics
- Modeling & Simulation
- Glass and Electro Ceramics
- Electrochemistry & Catalysis

Conference Programme Chairs:

Dr. Lidija Mančić SRB Dr. Nina Obradović SRB

Scientific Committee

Academician Zoran Popović SRB Academician Zoran Đurić SRB Prof. Dr. Vojislav Mitić SRB Prof. Dr. Rainer Gadow DEU Prof. Dr. Marcel Van de Voorde EEZ Prof. Dr. Wei Pan Prof. Dr. Reuben Jin-Ru Hwu Dr. Richard Todd GBR Prof. Dr. Hans Fecht DEU Prof.Dr. Olivera Milošević SRB Prof. Dr. Vladimir Pavlović SRB Dr. Nina Obradović SRB Dr. Lidija Mančić SRB Prof. Dr. Bojan Marinković BRA Dr. Takashi Goto, Japan Dr. Steven Tidrow, USA Dr. Snežana Pašalić SRB Prof. Dr. Zoran Nikolić SRB Dr. Nebojša Romčević SRB Dr. Zorica Lazarević SRB Prof. Dr. Nebojša Mitrović SRB Dr. Aleksandra Milutinović-Nikolić SRB Dr. Predrag Banković SRB Dr. Zorica Mojović SRB

- Refractory, Cements & Clays
- Renewable Energy & Composites
- Amorphous & Magnetic Ceramics
- Heritage, Art & Design

Conference Co-chairs:

Prof. Dr. Vojislav Mitić SRB Prof. Dr. Rainer Gadow GER

Prof. Dr. Branislav Vlahović USA Prof. Dr. Stevo Najman SRB Prof. Dr. Vera Pavlović

Organizing Committee

Prof. Dr. Vojislav Mitić SRB Dr. Lidija Mančić SRB Dr. Nina Obradović SRB Dr. Ivana Dinić SRB Dr. Marina Vuković SRB Dr. Suzana Filipović SRB Dr. Maria Čebela Dr. Nataša Jović Jovičević SRB Dr. Vesna Paunović SRB Dr. Vladimir Blagojević SRB Dr. Darko Kosanović SRB Dr. Vladimir Dodevski SRB Dr. Ivana Radović SRB Dr. Jelena Vujančević SRB Dr. Jelena Živojinović SRB Dr. Adriana Peleš Tadić SRB Dr. Ana Radosavljević Mihajlović, SRB Bojana Marković SRB

arrangement which could accommodate higher concentration of dopants at shorter distance. Stabilization of this phase in nanoparticles is usually achieved through thermal decomposition of organic precursors in the presence of solvents with a high boiling point. Here, for the same purpose, we used gadolinium co-doping during chitosan assisted solvothermal processing of inorganic precursor salts. Precursor concentration, solvent type, and synthesis time were varied in order to determine their influence on the β -NaY_{0.65}Gd_{0.15}F₄:Yb_{0.18}Er_{0.02} phase crystallization. The XRPD analysis showed that lower surplus of fluoride ions during synthesis leads to formation of Y_{0.65}Gd_{0.15}F₄:Yb_{0.18}Er_{0.02} orthorhombic phase, while the increase of fluoride content or prolongation of the processing time enhances formation α -NaY_{0.65}Gd_{0.15}F₄:Yb_{0.18}Er_{0.18} phase. Along with it, the changes of UCNPs morphology from spindle to spherical shape is detected. All samples emit intense green emission due to the (²H_{11/2}, ⁴S_{3/2}) \rightarrow ⁴I_{15/2} electronic transitions, after been excited with infrared light (λ =978 nm).

INV

Nonlinear laser scanning microscopy for imaging of the cells labeled by upconverting NaYF₄:Yb,Er nanoparticles

<u>Mihailo D. Rabasovic</u>¹, Ivana Dinic², Aleksandra Djukic-Vukovic³, Milos Lazarevic⁴, Marko G. Nikolic¹, Aleksandar J. Krmpot¹, Lidija Mancic²

¹Photonic Center, Institute of Physics Belgrade, University of Belgrade, Zemun, Belgrade, Serbia
²Institute of Technical Sciences of the Serbian Academy of Sciences and Arts, Belgrade, Serbia
³Department of Biochemical Engineering and Biotechnology, Faculty of Technology and Metallurgy, University of Belgrade, Serbia

⁴Institute of Human Genetics, School of Dental Medicine, University of Belgrade, Serbia

The Nonlinear Laser Scanning Microscopy (NLSM) contributes to the cell labeling through addressing two main issues: photobleaching and phototoxicity. Moreover, an increase of the penetration depth and a reduction of background autofluorescence are achieved.We have used a multidisciplinary approach combining expertise in material science, nanoparticles synthesis and characterization, cancer cell and tissue labeling, and high resolution imaging, in order to accomplish *in vitro* imaging of the cancer cells. We have imaged the oral squamous carcinoma cells and human gingival cells. We have demonstrated that we are able to take high contrast images. We have shown position of the nanoparticles in cells, through co-localization of the cell auto-fluorescence and the nanoparticles up-conversion.We plan to improve our abilities through further optimization of the up-converting nanoparticles (smaller and brighter particles) and microscopy technique.