US National Science Foundation (Grant: DMR EiR 2101041, NSF DMR PREM 2122044)

Link to this page

US National Science Foundation (Grant: DMR EiR 2101041, NSF DMR PREM 2122044)

Authors

Publications

Effect of the filler morphology on the crystallization behavior and dielectric properties of the polyvinylidene fluoride‐based composite

Filipović, Suzana; Obradović, Nina; Corlett, Cole; Fahrenholtz, William G.; Rosenschon, Martin; Füglein, Ekkehard; Dojčilović, Radovan; Tošić, Dragana; Petrović, Jovana; Đorđević, Antonije; Vlahović, Branislav; Pavlović, Vladimir B.

(Wiley, 2024)

TY  - JOUR
AU  - Filipović, Suzana
AU  - Obradović, Nina
AU  - Corlett, Cole
AU  - Fahrenholtz, William G.
AU  - Rosenschon, Martin
AU  - Füglein, Ekkehard
AU  - Dojčilović, Radovan
AU  - Tošić, Dragana
AU  - Petrović, Jovana
AU  - Đorđević, Antonije
AU  - Vlahović, Branislav
AU  - Pavlović, Vladimir B.
PY  - 2024
UR  - https://dais.sanu.ac.rs/123456789/16516
AB  - Ceramic/polymer composites can be chemically stable, mechanically strong, and flexible, which make them candidates for electric devices, such as pressure or temperature sensors, energy storage or harvesting devices, actuators, and so forth. Depending on the application, various electrical properties are of importance. Polymers usually have low dielectric permittivity, but increased dielectric permittivity can be achieved by the addition of the ceramic fillers with high dielectric constant. With the aim to enhance dielectric properties of the composite without loss of flexibility, 5 wt% of BaTiO3-Fe2O3 powder was added into a polyvinylidene fluoride matrix. The powder was prepared by different synthesis conditions to produce core/shell structures. The effect of the phase composition and morphology of the BaTiO3-Fe2O3 core/shell filler on the structure and lattice dynamics of the polymer composites was investigated. Based on the results of the thermal analysis, various parameters of ceramic/polymer composites were determined. Differences in the phase composition and morphology of the filler have an influence on the formation of various polyvinylidene fluoride allomorphs and the degree of crystallinity. Furthermore, the dielectric performances of pure polyvinylidene fluoride and the polymer/ceramic composites were measured.
PB  - Wiley
T2  - Journal of Applied Polymer Science
T1  - Effect of the filler morphology on the crystallization behavior and dielectric properties of the polyvinylidene fluoride‐based composite
SP  - e55040
VL  - 141
IS  - 10
DO  - 10.1002/app.55040
UR  - https://hdl.handle.net/21.15107/rcub_dais_16516
ER  - 
@article{
author = "Filipović, Suzana and Obradović, Nina and Corlett, Cole and Fahrenholtz, William G. and Rosenschon, Martin and Füglein, Ekkehard and Dojčilović, Radovan and Tošić, Dragana and Petrović, Jovana and Đorđević, Antonije and Vlahović, Branislav and Pavlović, Vladimir B.",
year = "2024",
abstract = "Ceramic/polymer composites can be chemically stable, mechanically strong, and flexible, which make them candidates for electric devices, such as pressure or temperature sensors, energy storage or harvesting devices, actuators, and so forth. Depending on the application, various electrical properties are of importance. Polymers usually have low dielectric permittivity, but increased dielectric permittivity can be achieved by the addition of the ceramic fillers with high dielectric constant. With the aim to enhance dielectric properties of the composite without loss of flexibility, 5 wt% of BaTiO3-Fe2O3 powder was added into a polyvinylidene fluoride matrix. The powder was prepared by different synthesis conditions to produce core/shell structures. The effect of the phase composition and morphology of the BaTiO3-Fe2O3 core/shell filler on the structure and lattice dynamics of the polymer composites was investigated. Based on the results of the thermal analysis, various parameters of ceramic/polymer composites were determined. Differences in the phase composition and morphology of the filler have an influence on the formation of various polyvinylidene fluoride allomorphs and the degree of crystallinity. Furthermore, the dielectric performances of pure polyvinylidene fluoride and the polymer/ceramic composites were measured.",
publisher = "Wiley",
journal = "Journal of Applied Polymer Science",
title = "Effect of the filler morphology on the crystallization behavior and dielectric properties of the polyvinylidene fluoride‐based composite",
pages = "e55040",
volume = "141",
number = "10",
doi = "10.1002/app.55040",
url = "https://hdl.handle.net/21.15107/rcub_dais_16516"
}
Filipović, S., Obradović, N., Corlett, C., Fahrenholtz, W. G., Rosenschon, M., Füglein, E., Dojčilović, R., Tošić, D., Petrović, J., Đorđević, A., Vlahović, B.,& Pavlović, V. B.. (2024). Effect of the filler morphology on the crystallization behavior and dielectric properties of the polyvinylidene fluoride‐based composite. in Journal of Applied Polymer Science
Wiley., 141(10), e55040.
https://doi.org/10.1002/app.55040
https://hdl.handle.net/21.15107/rcub_dais_16516
Filipović S, Obradović N, Corlett C, Fahrenholtz WG, Rosenschon M, Füglein E, Dojčilović R, Tošić D, Petrović J, Đorđević A, Vlahović B, Pavlović VB. Effect of the filler morphology on the crystallization behavior and dielectric properties of the polyvinylidene fluoride‐based composite. in Journal of Applied Polymer Science. 2024;141(10):e55040.
doi:10.1002/app.55040
https://hdl.handle.net/21.15107/rcub_dais_16516 .
Filipović, Suzana, Obradović, Nina, Corlett, Cole, Fahrenholtz, William G., Rosenschon, Martin, Füglein, Ekkehard, Dojčilović, Radovan, Tošić, Dragana, Petrović, Jovana, Đorđević, Antonije, Vlahović, Branislav, Pavlović, Vladimir B., "Effect of the filler morphology on the crystallization behavior and dielectric properties of the polyvinylidene fluoride‐based composite" in Journal of Applied Polymer Science, 141, no. 10 (2024):e55040,
https://doi.org/10.1002/app.55040 .,
https://hdl.handle.net/21.15107/rcub_dais_16516 .

Effect of the filler morphology on the crystallization behavior and dielectric properties of the polyvinylidene fluoride‐based composite

Filipović, Suzana; Obradović, Nina; Corlett, Cole; Fahrenholtz, William G.; Rosenschon, Martin; Füglein, Ekkehard; Dojčilović, Radovan; Tošić, Dragana; Petrović, Jovana; Đorđević, Antonije; Vlahović, Branislav; Pavlović, Vladimir B.

(Wiley, 2024)

TY  - JOUR
AU  - Filipović, Suzana
AU  - Obradović, Nina
AU  - Corlett, Cole
AU  - Fahrenholtz, William G.
AU  - Rosenschon, Martin
AU  - Füglein, Ekkehard
AU  - Dojčilović, Radovan
AU  - Tošić, Dragana
AU  - Petrović, Jovana
AU  - Đorđević, Antonije
AU  - Vlahović, Branislav
AU  - Pavlović, Vladimir B.
PY  - 2024
UR  - https://dais.sanu.ac.rs/123456789/16243
AB  - Ceramic/polymer composites can be chemically stable, mechanically strong, and flexible, which make them candidates for electric devices, such as pressure or temperature sensors, energy storage or harvesting devices, actuators, and so forth. Depending on the application, various electrical properties are of importance. Polymers usually have low dielectric permittivity, but increased dielectric permittivity can be achieved by the addition of the ceramic fillers with high dielectric constant. With the aim to enhance dielectric properties of the composite without loss of flexibility, 5 wt% of BaTiO3-Fe2O3 powder was added into a polyvinylidene fluoride matrix. The powder was prepared by different synthesis conditions to produce core/shell structures. The effect of the phase composition and morphology of the BaTiO3-Fe2O3 core/shell filler on the structure and lattice dynamics of the polymer composites was investigated. Based on the results of the thermal analysis, various parameters of ceramic/polymer composites were determined. Differences in the phase composition and morphology of the filler have an influence on the formation of various polyvinylidene fluoride allomorphs and the degree of crystallinity. Furthermore, the dielectric performances of pure polyvinylidene fluoride and the polymer/ceramic composites were measured.
PB  - Wiley
T2  - Journal of Applied Polymer Science
T1  - Effect of the filler morphology on the crystallization behavior and dielectric properties of the polyvinylidene fluoride‐based composite
SP  - e55040
VL  - 141
IS  - 10
DO  - 10.1002/app.55040
UR  - https://hdl.handle.net/21.15107/rcub_dais_16516
ER  - 
@article{
author = "Filipović, Suzana and Obradović, Nina and Corlett, Cole and Fahrenholtz, William G. and Rosenschon, Martin and Füglein, Ekkehard and Dojčilović, Radovan and Tošić, Dragana and Petrović, Jovana and Đorđević, Antonije and Vlahović, Branislav and Pavlović, Vladimir B.",
year = "2024",
abstract = "Ceramic/polymer composites can be chemically stable, mechanically strong, and flexible, which make them candidates for electric devices, such as pressure or temperature sensors, energy storage or harvesting devices, actuators, and so forth. Depending on the application, various electrical properties are of importance. Polymers usually have low dielectric permittivity, but increased dielectric permittivity can be achieved by the addition of the ceramic fillers with high dielectric constant. With the aim to enhance dielectric properties of the composite without loss of flexibility, 5 wt% of BaTiO3-Fe2O3 powder was added into a polyvinylidene fluoride matrix. The powder was prepared by different synthesis conditions to produce core/shell structures. The effect of the phase composition and morphology of the BaTiO3-Fe2O3 core/shell filler on the structure and lattice dynamics of the polymer composites was investigated. Based on the results of the thermal analysis, various parameters of ceramic/polymer composites were determined. Differences in the phase composition and morphology of the filler have an influence on the formation of various polyvinylidene fluoride allomorphs and the degree of crystallinity. Furthermore, the dielectric performances of pure polyvinylidene fluoride and the polymer/ceramic composites were measured.",
publisher = "Wiley",
journal = "Journal of Applied Polymer Science",
title = "Effect of the filler morphology on the crystallization behavior and dielectric properties of the polyvinylidene fluoride‐based composite",
pages = "e55040",
volume = "141",
number = "10",
doi = "10.1002/app.55040",
url = "https://hdl.handle.net/21.15107/rcub_dais_16516"
}
Filipović, S., Obradović, N., Corlett, C., Fahrenholtz, W. G., Rosenschon, M., Füglein, E., Dojčilović, R., Tošić, D., Petrović, J., Đorđević, A., Vlahović, B.,& Pavlović, V. B.. (2024). Effect of the filler morphology on the crystallization behavior and dielectric properties of the polyvinylidene fluoride‐based composite. in Journal of Applied Polymer Science
Wiley., 141(10), e55040.
https://doi.org/10.1002/app.55040
https://hdl.handle.net/21.15107/rcub_dais_16516
Filipović S, Obradović N, Corlett C, Fahrenholtz WG, Rosenschon M, Füglein E, Dojčilović R, Tošić D, Petrović J, Đorđević A, Vlahović B, Pavlović VB. Effect of the filler morphology on the crystallization behavior and dielectric properties of the polyvinylidene fluoride‐based composite. in Journal of Applied Polymer Science. 2024;141(10):e55040.
doi:10.1002/app.55040
https://hdl.handle.net/21.15107/rcub_dais_16516 .
Filipović, Suzana, Obradović, Nina, Corlett, Cole, Fahrenholtz, William G., Rosenschon, Martin, Füglein, Ekkehard, Dojčilović, Radovan, Tošić, Dragana, Petrović, Jovana, Đorđević, Antonije, Vlahović, Branislav, Pavlović, Vladimir B., "Effect of the filler morphology on the crystallization behavior and dielectric properties of the polyvinylidene fluoride‐based composite" in Journal of Applied Polymer Science, 141, no. 10 (2024):e55040,
https://doi.org/10.1002/app.55040 .,
https://hdl.handle.net/21.15107/rcub_dais_16516 .

Impact of Nanocellulose Loading on the Crystal Structure, Morphology and Properties of PVDF/Magnetite@NC/BaTiO3 Multi-component Hybrid Ceramic/Polymer Composite Material

Janićijević, Aleksandra; Pavlović, Vera P.; Kovačević, Danijela; Đorđević, Nenad; Marinković, Aleksandar; Vlahović, Branislav; Karoui, Abdennaceur; Pavlović, Vladimir B.; Filipović, Suzana

(Springer, 2023)

TY  - JOUR
AU  - Janićijević, Aleksandra
AU  - Pavlović, Vera P.
AU  - Kovačević, Danijela
AU  - Đorđević, Nenad
AU  - Marinković, Aleksandar
AU  - Vlahović, Branislav
AU  - Karoui, Abdennaceur
AU  - Pavlović, Vladimir B.
AU  - Filipović, Suzana
PY  - 2023
UR  - https://dais.sanu.ac.rs/123456789/16160
UR  - https://dais.sanu.ac.rs/123456789/16161
AB  - The hybrid multifunctional magnetic organic/inorganic composite materials, with addition of optimal filler type and quantities are attractive due to wide range of potential application, from various pressure sensors, through smart packaging, to tissue engineering and medicine. The structural, morphological and magnetic properties of polyvinylidene fluoride/nanocellulose/magnetite@BaTiO3 hybrid films were investigated. The presented study revealed significant impact of nanocellulose (NC) content on formation of the polymorphs of PVDF, responsible for ferro-, piezo- and pyroelectric properties. The structural characterization, XRD and Raman measurements confirmed enhancement of the β and γ phases when the loading of NC higher then 4 wt% in multi-component hybrid films. The saturation magnetization value gradually raises with increasing amount of NC and reaches its maximum value of 41.2 emu/g at content of 4 wt% NC. Further, addition of NC decreases saturation magnetization value regardless of constant amount of magnetite, indicating optimal content of NC substrate for co-precipitation of Fe3O4 onto NC matrix.
PB  - Springer
T2  - Journal of Inorganic and Organometallic Polymers and Materials
T1  - Impact of Nanocellulose Loading on the Crystal Structure, Morphology and Properties of PVDF/Magnetite@NC/BaTiO3 Multi-component Hybrid Ceramic/Polymer Composite Material
DO  - 10.1007/s10904-023-02953-w
UR  - https://hdl.handle.net/21.15107/rcub_dais_16161
ER  - 
@article{
author = "Janićijević, Aleksandra and Pavlović, Vera P. and Kovačević, Danijela and Đorđević, Nenad and Marinković, Aleksandar and Vlahović, Branislav and Karoui, Abdennaceur and Pavlović, Vladimir B. and Filipović, Suzana",
year = "2023",
abstract = "The hybrid multifunctional magnetic organic/inorganic composite materials, with addition of optimal filler type and quantities are attractive due to wide range of potential application, from various pressure sensors, through smart packaging, to tissue engineering and medicine. The structural, morphological and magnetic properties of polyvinylidene fluoride/nanocellulose/magnetite@BaTiO3 hybrid films were investigated. The presented study revealed significant impact of nanocellulose (NC) content on formation of the polymorphs of PVDF, responsible for ferro-, piezo- and pyroelectric properties. The structural characterization, XRD and Raman measurements confirmed enhancement of the β and γ phases when the loading of NC higher then 4 wt% in multi-component hybrid films. The saturation magnetization value gradually raises with increasing amount of NC and reaches its maximum value of 41.2 emu/g at content of 4 wt% NC. Further, addition of NC decreases saturation magnetization value regardless of constant amount of magnetite, indicating optimal content of NC substrate for co-precipitation of Fe3O4 onto NC matrix.",
publisher = "Springer",
journal = "Journal of Inorganic and Organometallic Polymers and Materials",
title = "Impact of Nanocellulose Loading on the Crystal Structure, Morphology and Properties of PVDF/Magnetite@NC/BaTiO3 Multi-component Hybrid Ceramic/Polymer Composite Material",
doi = "10.1007/s10904-023-02953-w",
url = "https://hdl.handle.net/21.15107/rcub_dais_16161"
}
Janićijević, A., Pavlović, V. P., Kovačević, D., Đorđević, N., Marinković, A., Vlahović, B., Karoui, A., Pavlović, V. B.,& Filipović, S.. (2023). Impact of Nanocellulose Loading on the Crystal Structure, Morphology and Properties of PVDF/Magnetite@NC/BaTiO3 Multi-component Hybrid Ceramic/Polymer Composite Material. in Journal of Inorganic and Organometallic Polymers and Materials
Springer..
https://doi.org/10.1007/s10904-023-02953-w
https://hdl.handle.net/21.15107/rcub_dais_16161
Janićijević A, Pavlović VP, Kovačević D, Đorđević N, Marinković A, Vlahović B, Karoui A, Pavlović VB, Filipović S. Impact of Nanocellulose Loading on the Crystal Structure, Morphology and Properties of PVDF/Magnetite@NC/BaTiO3 Multi-component Hybrid Ceramic/Polymer Composite Material. in Journal of Inorganic and Organometallic Polymers and Materials. 2023;.
doi:10.1007/s10904-023-02953-w
https://hdl.handle.net/21.15107/rcub_dais_16161 .
Janićijević, Aleksandra, Pavlović, Vera P., Kovačević, Danijela, Đorđević, Nenad, Marinković, Aleksandar, Vlahović, Branislav, Karoui, Abdennaceur, Pavlović, Vladimir B., Filipović, Suzana, "Impact of Nanocellulose Loading on the Crystal Structure, Morphology and Properties of PVDF/Magnetite@NC/BaTiO3 Multi-component Hybrid Ceramic/Polymer Composite Material" in Journal of Inorganic and Organometallic Polymers and Materials (2023),
https://doi.org/10.1007/s10904-023-02953-w .,
https://hdl.handle.net/21.15107/rcub_dais_16161 .

Dielectric and Structural Properties of the Hybrid Material Polyvinylidene Fluoride-Bacterial Nanocellulose-Based Composite

Janićijević, Aleksandra; Filipović, Suzana; Sknepnek, Aleksandra; Vlahović, Branislav; Đorđević, Nenad; Kovacević, Danijela; Mirković, Miljana; Petronijević, Ivan; Živković, Predrag; Rogan, Jelena; Pavlović, Vladimir B.

(Basel : MDPI, 2023)

TY  - JOUR
AU  - Janićijević, Aleksandra
AU  - Filipović, Suzana
AU  - Sknepnek, Aleksandra
AU  - Vlahović, Branislav
AU  - Đorđević, Nenad
AU  - Kovacević, Danijela
AU  - Mirković, Miljana
AU  - Petronijević, Ivan
AU  - Živković, Predrag
AU  - Rogan, Jelena
AU  - Pavlović, Vladimir B.
PY  - 2023
UR  - https://dais.sanu.ac.rs/123456789/15363
AB  - In the search for environmentally friendly materials with a wide range of properties, polymer composites have emerged as a promising alternative due to their multifunctional properties. This study focuses on the synthesis of composite materials consisting of four components: bacterial nanocellulose (BNC) modified with magnetic Fe3O4, and a mixture of BaTiO3 (BT) and polyvinylidene fluoride (PVDF). The BT powder was mechanically activated prior to mixing with PVDF. The influence of BT mechanical activation and BNC with magnetic particles on the PVDF matrix was investigated. The obtained composite films’ structural characteristics, morphology, and dielectric properties are presented. This research provides insights into the relationship between mechanical activation of the filler and structural and dielectric properties in the PVDF/BT/BNC/Fe3O4 system, creating the way for the development of materials with a wide range of diverse properties that support the concept of green technologies.
PB  - Basel : MDPI
T2  - Polymers
T1  - Dielectric and Structural Properties of the Hybrid Material Polyvinylidene Fluoride-Bacterial Nanocellulose-Based Composite
SP  - 4080
VL  - 15
IS  - 20
DO  - 10.3390/polym15204080
UR  - https://hdl.handle.net/21.15107/rcub_dais_15363
ER  - 
@article{
author = "Janićijević, Aleksandra and Filipović, Suzana and Sknepnek, Aleksandra and Vlahović, Branislav and Đorđević, Nenad and Kovacević, Danijela and Mirković, Miljana and Petronijević, Ivan and Živković, Predrag and Rogan, Jelena and Pavlović, Vladimir B.",
year = "2023",
abstract = "In the search for environmentally friendly materials with a wide range of properties, polymer composites have emerged as a promising alternative due to their multifunctional properties. This study focuses on the synthesis of composite materials consisting of four components: bacterial nanocellulose (BNC) modified with magnetic Fe3O4, and a mixture of BaTiO3 (BT) and polyvinylidene fluoride (PVDF). The BT powder was mechanically activated prior to mixing with PVDF. The influence of BT mechanical activation and BNC with magnetic particles on the PVDF matrix was investigated. The obtained composite films’ structural characteristics, morphology, and dielectric properties are presented. This research provides insights into the relationship between mechanical activation of the filler and structural and dielectric properties in the PVDF/BT/BNC/Fe3O4 system, creating the way for the development of materials with a wide range of diverse properties that support the concept of green technologies.",
publisher = "Basel : MDPI",
journal = "Polymers",
title = "Dielectric and Structural Properties of the Hybrid Material Polyvinylidene Fluoride-Bacterial Nanocellulose-Based Composite",
pages = "4080",
volume = "15",
number = "20",
doi = "10.3390/polym15204080",
url = "https://hdl.handle.net/21.15107/rcub_dais_15363"
}
Janićijević, A., Filipović, S., Sknepnek, A., Vlahović, B., Đorđević, N., Kovacević, D., Mirković, M., Petronijević, I., Živković, P., Rogan, J.,& Pavlović, V. B.. (2023). Dielectric and Structural Properties of the Hybrid Material Polyvinylidene Fluoride-Bacterial Nanocellulose-Based Composite. in Polymers
Basel : MDPI., 15(20), 4080.
https://doi.org/10.3390/polym15204080
https://hdl.handle.net/21.15107/rcub_dais_15363
Janićijević A, Filipović S, Sknepnek A, Vlahović B, Đorđević N, Kovacević D, Mirković M, Petronijević I, Živković P, Rogan J, Pavlović VB. Dielectric and Structural Properties of the Hybrid Material Polyvinylidene Fluoride-Bacterial Nanocellulose-Based Composite. in Polymers. 2023;15(20):4080.
doi:10.3390/polym15204080
https://hdl.handle.net/21.15107/rcub_dais_15363 .
Janićijević, Aleksandra, Filipović, Suzana, Sknepnek, Aleksandra, Vlahović, Branislav, Đorđević, Nenad, Kovacević, Danijela, Mirković, Miljana, Petronijević, Ivan, Živković, Predrag, Rogan, Jelena, Pavlović, Vladimir B., "Dielectric and Structural Properties of the Hybrid Material Polyvinylidene Fluoride-Bacterial Nanocellulose-Based Composite" in Polymers, 15, no. 20 (2023):4080,
https://doi.org/10.3390/polym15204080 .,
https://hdl.handle.net/21.15107/rcub_dais_15363 .
1