Serbian Academy of Sciences and Arts, Project F-133

Link to this page

Serbian Academy of Sciences and Arts, Project F-133

Authors

Publications

Effect of the filler morphology on the crystallization behavior and dielectric properties of the polyvinylidene fluoride‐based composite

Filipović, Suzana; Obradović, Nina; Corlett, Cole; Fahrenholtz, William G.; Rosenschon, Martin; Füglein, Ekkehard; Dojčilović, Radovan; Tošić, Dragana; Petrović, Jovana; Đorđević, Antonije; Vlahović, Branislav; Pavlović, Vladimir B.

(Wiley, 2024)

TY  - JOUR
AU  - Filipović, Suzana
AU  - Obradović, Nina
AU  - Corlett, Cole
AU  - Fahrenholtz, William G.
AU  - Rosenschon, Martin
AU  - Füglein, Ekkehard
AU  - Dojčilović, Radovan
AU  - Tošić, Dragana
AU  - Petrović, Jovana
AU  - Đorđević, Antonije
AU  - Vlahović, Branislav
AU  - Pavlović, Vladimir B.
PY  - 2024
UR  - https://dais.sanu.ac.rs/123456789/16516
AB  - Ceramic/polymer composites can be chemically stable, mechanically strong, and flexible, which make them candidates for electric devices, such as pressure or temperature sensors, energy storage or harvesting devices, actuators, and so forth. Depending on the application, various electrical properties are of importance. Polymers usually have low dielectric permittivity, but increased dielectric permittivity can be achieved by the addition of the ceramic fillers with high dielectric constant. With the aim to enhance dielectric properties of the composite without loss of flexibility, 5 wt% of BaTiO3-Fe2O3 powder was added into a polyvinylidene fluoride matrix. The powder was prepared by different synthesis conditions to produce core/shell structures. The effect of the phase composition and morphology of the BaTiO3-Fe2O3 core/shell filler on the structure and lattice dynamics of the polymer composites was investigated. Based on the results of the thermal analysis, various parameters of ceramic/polymer composites were determined. Differences in the phase composition and morphology of the filler have an influence on the formation of various polyvinylidene fluoride allomorphs and the degree of crystallinity. Furthermore, the dielectric performances of pure polyvinylidene fluoride and the polymer/ceramic composites were measured.
PB  - Wiley
T2  - Journal of Applied Polymer Science
T1  - Effect of the filler morphology on the crystallization behavior and dielectric properties of the polyvinylidene fluoride‐based composite
SP  - e55040
VL  - 141
IS  - 10
DO  - 10.1002/app.55040
UR  - https://hdl.handle.net/21.15107/rcub_dais_16516
ER  - 
@article{
author = "Filipović, Suzana and Obradović, Nina and Corlett, Cole and Fahrenholtz, William G. and Rosenschon, Martin and Füglein, Ekkehard and Dojčilović, Radovan and Tošić, Dragana and Petrović, Jovana and Đorđević, Antonije and Vlahović, Branislav and Pavlović, Vladimir B.",
year = "2024",
abstract = "Ceramic/polymer composites can be chemically stable, mechanically strong, and flexible, which make them candidates for electric devices, such as pressure or temperature sensors, energy storage or harvesting devices, actuators, and so forth. Depending on the application, various electrical properties are of importance. Polymers usually have low dielectric permittivity, but increased dielectric permittivity can be achieved by the addition of the ceramic fillers with high dielectric constant. With the aim to enhance dielectric properties of the composite without loss of flexibility, 5 wt% of BaTiO3-Fe2O3 powder was added into a polyvinylidene fluoride matrix. The powder was prepared by different synthesis conditions to produce core/shell structures. The effect of the phase composition and morphology of the BaTiO3-Fe2O3 core/shell filler on the structure and lattice dynamics of the polymer composites was investigated. Based on the results of the thermal analysis, various parameters of ceramic/polymer composites were determined. Differences in the phase composition and morphology of the filler have an influence on the formation of various polyvinylidene fluoride allomorphs and the degree of crystallinity. Furthermore, the dielectric performances of pure polyvinylidene fluoride and the polymer/ceramic composites were measured.",
publisher = "Wiley",
journal = "Journal of Applied Polymer Science",
title = "Effect of the filler morphology on the crystallization behavior and dielectric properties of the polyvinylidene fluoride‐based composite",
pages = "e55040",
volume = "141",
number = "10",
doi = "10.1002/app.55040",
url = "https://hdl.handle.net/21.15107/rcub_dais_16516"
}
Filipović, S., Obradović, N., Corlett, C., Fahrenholtz, W. G., Rosenschon, M., Füglein, E., Dojčilović, R., Tošić, D., Petrović, J., Đorđević, A., Vlahović, B.,& Pavlović, V. B.. (2024). Effect of the filler morphology on the crystallization behavior and dielectric properties of the polyvinylidene fluoride‐based composite. in Journal of Applied Polymer Science
Wiley., 141(10), e55040.
https://doi.org/10.1002/app.55040
https://hdl.handle.net/21.15107/rcub_dais_16516
Filipović S, Obradović N, Corlett C, Fahrenholtz WG, Rosenschon M, Füglein E, Dojčilović R, Tošić D, Petrović J, Đorđević A, Vlahović B, Pavlović VB. Effect of the filler morphology on the crystallization behavior and dielectric properties of the polyvinylidene fluoride‐based composite. in Journal of Applied Polymer Science. 2024;141(10):e55040.
doi:10.1002/app.55040
https://hdl.handle.net/21.15107/rcub_dais_16516 .
Filipović, Suzana, Obradović, Nina, Corlett, Cole, Fahrenholtz, William G., Rosenschon, Martin, Füglein, Ekkehard, Dojčilović, Radovan, Tošić, Dragana, Petrović, Jovana, Đorđević, Antonije, Vlahović, Branislav, Pavlović, Vladimir B., "Effect of the filler morphology on the crystallization behavior and dielectric properties of the polyvinylidene fluoride‐based composite" in Journal of Applied Polymer Science, 141, no. 10 (2024):e55040,
https://doi.org/10.1002/app.55040 .,
https://hdl.handle.net/21.15107/rcub_dais_16516 .

Effect of the filler morphology on the crystallization behavior and dielectric properties of the polyvinylidene fluoride‐based composite

Filipović, Suzana; Obradović, Nina; Corlett, Cole; Fahrenholtz, William G.; Rosenschon, Martin; Füglein, Ekkehard; Dojčilović, Radovan; Tošić, Dragana; Petrović, Jovana; Đorđević, Antonije; Vlahović, Branislav; Pavlović, Vladimir B.

(Wiley, 2024)

TY  - JOUR
AU  - Filipović, Suzana
AU  - Obradović, Nina
AU  - Corlett, Cole
AU  - Fahrenholtz, William G.
AU  - Rosenschon, Martin
AU  - Füglein, Ekkehard
AU  - Dojčilović, Radovan
AU  - Tošić, Dragana
AU  - Petrović, Jovana
AU  - Đorđević, Antonije
AU  - Vlahović, Branislav
AU  - Pavlović, Vladimir B.
PY  - 2024
UR  - https://dais.sanu.ac.rs/123456789/16243
AB  - Ceramic/polymer composites can be chemically stable, mechanically strong, and flexible, which make them candidates for electric devices, such as pressure or temperature sensors, energy storage or harvesting devices, actuators, and so forth. Depending on the application, various electrical properties are of importance. Polymers usually have low dielectric permittivity, but increased dielectric permittivity can be achieved by the addition of the ceramic fillers with high dielectric constant. With the aim to enhance dielectric properties of the composite without loss of flexibility, 5 wt% of BaTiO3-Fe2O3 powder was added into a polyvinylidene fluoride matrix. The powder was prepared by different synthesis conditions to produce core/shell structures. The effect of the phase composition and morphology of the BaTiO3-Fe2O3 core/shell filler on the structure and lattice dynamics of the polymer composites was investigated. Based on the results of the thermal analysis, various parameters of ceramic/polymer composites were determined. Differences in the phase composition and morphology of the filler have an influence on the formation of various polyvinylidene fluoride allomorphs and the degree of crystallinity. Furthermore, the dielectric performances of pure polyvinylidene fluoride and the polymer/ceramic composites were measured.
PB  - Wiley
T2  - Journal of Applied Polymer Science
T1  - Effect of the filler morphology on the crystallization behavior and dielectric properties of the polyvinylidene fluoride‐based composite
SP  - e55040
VL  - 141
IS  - 10
DO  - 10.1002/app.55040
UR  - https://hdl.handle.net/21.15107/rcub_dais_16516
ER  - 
@article{
author = "Filipović, Suzana and Obradović, Nina and Corlett, Cole and Fahrenholtz, William G. and Rosenschon, Martin and Füglein, Ekkehard and Dojčilović, Radovan and Tošić, Dragana and Petrović, Jovana and Đorđević, Antonije and Vlahović, Branislav and Pavlović, Vladimir B.",
year = "2024",
abstract = "Ceramic/polymer composites can be chemically stable, mechanically strong, and flexible, which make them candidates for electric devices, such as pressure or temperature sensors, energy storage or harvesting devices, actuators, and so forth. Depending on the application, various electrical properties are of importance. Polymers usually have low dielectric permittivity, but increased dielectric permittivity can be achieved by the addition of the ceramic fillers with high dielectric constant. With the aim to enhance dielectric properties of the composite without loss of flexibility, 5 wt% of BaTiO3-Fe2O3 powder was added into a polyvinylidene fluoride matrix. The powder was prepared by different synthesis conditions to produce core/shell structures. The effect of the phase composition and morphology of the BaTiO3-Fe2O3 core/shell filler on the structure and lattice dynamics of the polymer composites was investigated. Based on the results of the thermal analysis, various parameters of ceramic/polymer composites were determined. Differences in the phase composition and morphology of the filler have an influence on the formation of various polyvinylidene fluoride allomorphs and the degree of crystallinity. Furthermore, the dielectric performances of pure polyvinylidene fluoride and the polymer/ceramic composites were measured.",
publisher = "Wiley",
journal = "Journal of Applied Polymer Science",
title = "Effect of the filler morphology on the crystallization behavior and dielectric properties of the polyvinylidene fluoride‐based composite",
pages = "e55040",
volume = "141",
number = "10",
doi = "10.1002/app.55040",
url = "https://hdl.handle.net/21.15107/rcub_dais_16516"
}
Filipović, S., Obradović, N., Corlett, C., Fahrenholtz, W. G., Rosenschon, M., Füglein, E., Dojčilović, R., Tošić, D., Petrović, J., Đorđević, A., Vlahović, B.,& Pavlović, V. B.. (2024). Effect of the filler morphology on the crystallization behavior and dielectric properties of the polyvinylidene fluoride‐based composite. in Journal of Applied Polymer Science
Wiley., 141(10), e55040.
https://doi.org/10.1002/app.55040
https://hdl.handle.net/21.15107/rcub_dais_16516
Filipović S, Obradović N, Corlett C, Fahrenholtz WG, Rosenschon M, Füglein E, Dojčilović R, Tošić D, Petrović J, Đorđević A, Vlahović B, Pavlović VB. Effect of the filler morphology on the crystallization behavior and dielectric properties of the polyvinylidene fluoride‐based composite. in Journal of Applied Polymer Science. 2024;141(10):e55040.
doi:10.1002/app.55040
https://hdl.handle.net/21.15107/rcub_dais_16516 .
Filipović, Suzana, Obradović, Nina, Corlett, Cole, Fahrenholtz, William G., Rosenschon, Martin, Füglein, Ekkehard, Dojčilović, Radovan, Tošić, Dragana, Petrović, Jovana, Đorđević, Antonije, Vlahović, Branislav, Pavlović, Vladimir B., "Effect of the filler morphology on the crystallization behavior and dielectric properties of the polyvinylidene fluoride‐based composite" in Journal of Applied Polymer Science, 141, no. 10 (2024):e55040,
https://doi.org/10.1002/app.55040 .,
https://hdl.handle.net/21.15107/rcub_dais_16516 .

High-Precision Method of Moments Applied to Measurement of Dielectric Parameters at Microwave Frequencies

Petrović, Jovana G.; Olćan, Dragan I.; Obradović, Nina N.; Đorđević, Antonije R.

(Institute of Electrical and Electronics Engineers (IEEE), 2022)

TY  - JOUR
AU  - Petrović, Jovana G.
AU  - Olćan, Dragan I.
AU  - Obradović, Nina N.
AU  - Đorđević, Antonije R.
PY  - 2022
UR  - https://dais.sanu.ac.rs/123456789/12534
AB  - A novel high-precision model of a custom-made coaxial chamber used for broadband measurement of the relative complex permittivity at microwave frequencies is presented. The model is based on a surface integral-equation formulation of the method of moments tailored for bodies of revolution. All singular integrals encountered in the numerical analysis are calculated in a unified way with a novel integral transformation, which enables the precision of up to 12 significant digits using the 64-bit representation of real numbers. The dielectric parameters are estimated from the reflection-coefficient measurement of the chamber with a disk-shaped dielectric sample by comparison of the measured data with the high-precision numerical analysis of the chamber. The complete measurement procedure is illustrated and verified using samples of known dielectric properties.
PB  - Institute of Electrical and Electronics Engineers (IEEE)
T2  - IEEE Transactions on Microwave Theory and Techniques
T1  - High-Precision Method of Moments Applied to Measurement of Dielectric Parameters at Microwave Frequencies
SP  - 970
EP  - 979
VL  - 70
IS  - 2
DO  - 10.1109/TMTT.2021.3136294
UR  - https://hdl.handle.net/21.15107/rcub_dais_12534
ER  - 
@article{
author = "Petrović, Jovana G. and Olćan, Dragan I. and Obradović, Nina N. and Đorđević, Antonije R.",
year = "2022",
abstract = "A novel high-precision model of a custom-made coaxial chamber used for broadband measurement of the relative complex permittivity at microwave frequencies is presented. The model is based on a surface integral-equation formulation of the method of moments tailored for bodies of revolution. All singular integrals encountered in the numerical analysis are calculated in a unified way with a novel integral transformation, which enables the precision of up to 12 significant digits using the 64-bit representation of real numbers. The dielectric parameters are estimated from the reflection-coefficient measurement of the chamber with a disk-shaped dielectric sample by comparison of the measured data with the high-precision numerical analysis of the chamber. The complete measurement procedure is illustrated and verified using samples of known dielectric properties.",
publisher = "Institute of Electrical and Electronics Engineers (IEEE)",
journal = "IEEE Transactions on Microwave Theory and Techniques",
title = "High-Precision Method of Moments Applied to Measurement of Dielectric Parameters at Microwave Frequencies",
pages = "970-979",
volume = "70",
number = "2",
doi = "10.1109/TMTT.2021.3136294",
url = "https://hdl.handle.net/21.15107/rcub_dais_12534"
}
Petrović, J. G., Olćan, D. I., Obradović, N. N.,& Đorđević, A. R.. (2022). High-Precision Method of Moments Applied to Measurement of Dielectric Parameters at Microwave Frequencies. in IEEE Transactions on Microwave Theory and Techniques
Institute of Electrical and Electronics Engineers (IEEE)., 70(2), 970-979.
https://doi.org/10.1109/TMTT.2021.3136294
https://hdl.handle.net/21.15107/rcub_dais_12534
Petrović JG, Olćan DI, Obradović NN, Đorđević AR. High-Precision Method of Moments Applied to Measurement of Dielectric Parameters at Microwave Frequencies. in IEEE Transactions on Microwave Theory and Techniques. 2022;70(2):970-979.
doi:10.1109/TMTT.2021.3136294
https://hdl.handle.net/21.15107/rcub_dais_12534 .
Petrović, Jovana G., Olćan, Dragan I., Obradović, Nina N., Đorđević, Antonije R., "High-Precision Method of Moments Applied to Measurement of Dielectric Parameters at Microwave Frequencies" in IEEE Transactions on Microwave Theory and Techniques, 70, no. 2 (2022):970-979,
https://doi.org/10.1109/TMTT.2021.3136294 .,
https://hdl.handle.net/21.15107/rcub_dais_12534 .
3

Measurement of dielectric permitivity using coaxial chambers and electromagnetic-modeling software

Obradović, Nina; Peleš, Adriana; Olćan, Dragan; Fahrenholtz, William G.; Đorđević, Antonije; Pavlović, Vladimir B.

(Belgrade : Innovation Center of Faculty of Mechanical Engineering, 2021)

TY  - CONF
AU  - Obradović, Nina
AU  - Peleš, Adriana
AU  - Olćan, Dragan
AU  - Fahrenholtz, William G.
AU  - Đorđević, Antonije
AU  - Pavlović, Vladimir B.
PY  - 2021
UR  - https://dais.sanu.ac.rs/123456789/12351
AB  - Our research group has developed a method for measurement of complex relative permittivity of various dielectric materials in the frequency range from around 1 kHz up to several GHz. Material samples have preferably a disk shape. The thicknesses of the samples can be in a wide range, from about 10 μm (thick films) up to several mm. We have designed and manufactured a set of coaxial chambers, which we use as test fixtures. We have also developed two numerical-simulation programs for the electromagnetic analysis of bodies with rotational symmetry. One program is suitable for the low-frequency analysis. It is based on an electrostatic approach. The other program is based on an electrodynamic approach and it is tailored for microwave frequencies. In measurements, we use impedance meters and network analyzers to obtain the input impedance of a chamber with a sample. Thereafter, we implement our software for the electromagnetic modeling to extract the relative permittivity of the measured sample. As examples of verification of our method, we present here results for the relative permittivities of two sets of samples whose sizes are on the extreme limits of the method. The first set comprises poly (vinylidene fluoride) and mechanically activated ZnO nanoparticle composite films, whose relative permittivities are around 1.8. The second set comprises large, high-density samples of spinel (aluminum magnesium oxide) ceramics, sintered under various conditions. The measured relative permittivities of these samples are around 7.5. In all cases, good agreement with other available data has been obtained.
PB  - Belgrade : Innovation Center of Faculty of Mechanical Engineering
C3  - Programme and The Book of Abstracts / International Conference of Experimental and Numerical Investigations and New Technologies - CNN TECH 2021,29 June - 02 July 2021, Zlatibor, Serbia
T1  - Measurement of dielectric permitivity using coaxial chambers and electromagnetic-modeling software
SP  - 82
EP  - 82
UR  - https://hdl.handle.net/21.15107/rcub_dais_12351
ER  - 
@conference{
author = "Obradović, Nina and Peleš, Adriana and Olćan, Dragan and Fahrenholtz, William G. and Đorđević, Antonije and Pavlović, Vladimir B.",
year = "2021",
abstract = "Our research group has developed a method for measurement of complex relative permittivity of various dielectric materials in the frequency range from around 1 kHz up to several GHz. Material samples have preferably a disk shape. The thicknesses of the samples can be in a wide range, from about 10 μm (thick films) up to several mm. We have designed and manufactured a set of coaxial chambers, which we use as test fixtures. We have also developed two numerical-simulation programs for the electromagnetic analysis of bodies with rotational symmetry. One program is suitable for the low-frequency analysis. It is based on an electrostatic approach. The other program is based on an electrodynamic approach and it is tailored for microwave frequencies. In measurements, we use impedance meters and network analyzers to obtain the input impedance of a chamber with a sample. Thereafter, we implement our software for the electromagnetic modeling to extract the relative permittivity of the measured sample. As examples of verification of our method, we present here results for the relative permittivities of two sets of samples whose sizes are on the extreme limits of the method. The first set comprises poly (vinylidene fluoride) and mechanically activated ZnO nanoparticle composite films, whose relative permittivities are around 1.8. The second set comprises large, high-density samples of spinel (aluminum magnesium oxide) ceramics, sintered under various conditions. The measured relative permittivities of these samples are around 7.5. In all cases, good agreement with other available data has been obtained.",
publisher = "Belgrade : Innovation Center of Faculty of Mechanical Engineering",
journal = "Programme and The Book of Abstracts / International Conference of Experimental and Numerical Investigations and New Technologies - CNN TECH 2021,29 June - 02 July 2021, Zlatibor, Serbia",
title = "Measurement of dielectric permitivity using coaxial chambers and electromagnetic-modeling software",
pages = "82-82",
url = "https://hdl.handle.net/21.15107/rcub_dais_12351"
}
Obradović, N., Peleš, A., Olćan, D., Fahrenholtz, W. G., Đorđević, A.,& Pavlović, V. B.. (2021). Measurement of dielectric permitivity using coaxial chambers and electromagnetic-modeling software. in Programme and The Book of Abstracts / International Conference of Experimental and Numerical Investigations and New Technologies - CNN TECH 2021,29 June - 02 July 2021, Zlatibor, Serbia
Belgrade : Innovation Center of Faculty of Mechanical Engineering., 82-82.
https://hdl.handle.net/21.15107/rcub_dais_12351
Obradović N, Peleš A, Olćan D, Fahrenholtz WG, Đorđević A, Pavlović VB. Measurement of dielectric permitivity using coaxial chambers and electromagnetic-modeling software. in Programme and The Book of Abstracts / International Conference of Experimental and Numerical Investigations and New Technologies - CNN TECH 2021,29 June - 02 July 2021, Zlatibor, Serbia. 2021;:82-82.
https://hdl.handle.net/21.15107/rcub_dais_12351 .
Obradović, Nina, Peleš, Adriana, Olćan, Dragan, Fahrenholtz, William G., Đorđević, Antonije, Pavlović, Vladimir B., "Measurement of dielectric permitivity using coaxial chambers and electromagnetic-modeling software" in Programme and The Book of Abstracts / International Conference of Experimental and Numerical Investigations and New Technologies - CNN TECH 2021,29 June - 02 July 2021, Zlatibor, Serbia (2021):82-82,
https://hdl.handle.net/21.15107/rcub_dais_12351 .

Multiferroic Heterostructure BaTiO3/ε-Fe2O3 Composite Obtained by in situ Reaction

Filipović, Suzana; Obradović, Nina; Anđelković, Ljubica; Olćan, Dragan; Petrović, Jovana; Mirković, Miljana; Pavlović, Vladimir B.; Jeremić, Dejan; Vlahović, Branislav; Đorđević, Antonije

(Belgrade : International Institute for the Science of Sintering, 2021)

TY  - JOUR
AU  - Filipović, Suzana
AU  - Obradović, Nina
AU  - Anđelković, Ljubica
AU  - Olćan, Dragan
AU  - Petrović, Jovana
AU  - Mirković, Miljana
AU  - Pavlović, Vladimir B.
AU  - Jeremić, Dejan
AU  - Vlahović, Branislav
AU  - Đorđević, Antonije
PY  - 2021
UR  - https://dais.sanu.ac.rs/123456789/11230
AB  - Solid-state reaction between BaTiO3 and Fe2O3 was used to produce a multiferroic heterostructure composite. Commercial BaTiO3 and Fe(NO3)3•9H2O were suspended in ethanol for 30 minutes in an ultrasound bath. The prepared mixture was thermally processed at 300 oC for 6 h. Sintering at 1300 oC for 1 h resulted in a mixture of different phases, BaTiO3, BaFe12O19 and Ba12Ti28Fe15O84, which were confirmed by x-ray powder diffraction. A dense microstructure with a small volume fraction of closed porosity was indicated by the scanning electron microscopy, while a homogeneous distribution of Fe ions over BaTiO3 phase was visible from energy dispersive spectroscopy mapping. Doping of BaTiO3 with Fe2O3 resulted in formation of magnetic hexaferrite phases, as confirmed by dielectric measurements that showed a broadened maximum of the permittivity measured as a function of temperature.
PB  - Belgrade : International Institute for the Science of Sintering
T2  - Science of Sintering
T1  - Multiferroic Heterostructure BaTiO3/ε-Fe2O3 Composite Obtained by in situ Reaction
SP  - 1
EP  - 8
VL  - 53
DO  - 10.2298/SOS2101001F
UR  - https://hdl.handle.net/21.15107/rcub_dais_11230
ER  - 
@article{
author = "Filipović, Suzana and Obradović, Nina and Anđelković, Ljubica and Olćan, Dragan and Petrović, Jovana and Mirković, Miljana and Pavlović, Vladimir B. and Jeremić, Dejan and Vlahović, Branislav and Đorđević, Antonije",
year = "2021",
abstract = "Solid-state reaction between BaTiO3 and Fe2O3 was used to produce a multiferroic heterostructure composite. Commercial BaTiO3 and Fe(NO3)3•9H2O were suspended in ethanol for 30 minutes in an ultrasound bath. The prepared mixture was thermally processed at 300 oC for 6 h. Sintering at 1300 oC for 1 h resulted in a mixture of different phases, BaTiO3, BaFe12O19 and Ba12Ti28Fe15O84, which were confirmed by x-ray powder diffraction. A dense microstructure with a small volume fraction of closed porosity was indicated by the scanning electron microscopy, while a homogeneous distribution of Fe ions over BaTiO3 phase was visible from energy dispersive spectroscopy mapping. Doping of BaTiO3 with Fe2O3 resulted in formation of magnetic hexaferrite phases, as confirmed by dielectric measurements that showed a broadened maximum of the permittivity measured as a function of temperature.",
publisher = "Belgrade : International Institute for the Science of Sintering",
journal = "Science of Sintering",
title = "Multiferroic Heterostructure BaTiO3/ε-Fe2O3 Composite Obtained by in situ Reaction",
pages = "1-8",
volume = "53",
doi = "10.2298/SOS2101001F",
url = "https://hdl.handle.net/21.15107/rcub_dais_11230"
}
Filipović, S., Obradović, N., Anđelković, L., Olćan, D., Petrović, J., Mirković, M., Pavlović, V. B., Jeremić, D., Vlahović, B.,& Đorđević, A.. (2021). Multiferroic Heterostructure BaTiO3/ε-Fe2O3 Composite Obtained by in situ Reaction. in Science of Sintering
Belgrade : International Institute for the Science of Sintering., 53, 1-8.
https://doi.org/10.2298/SOS2101001F
https://hdl.handle.net/21.15107/rcub_dais_11230
Filipović S, Obradović N, Anđelković L, Olćan D, Petrović J, Mirković M, Pavlović VB, Jeremić D, Vlahović B, Đorđević A. Multiferroic Heterostructure BaTiO3/ε-Fe2O3 Composite Obtained by in situ Reaction. in Science of Sintering. 2021;53:1-8.
doi:10.2298/SOS2101001F
https://hdl.handle.net/21.15107/rcub_dais_11230 .
Filipović, Suzana, Obradović, Nina, Anđelković, Ljubica, Olćan, Dragan, Petrović, Jovana, Mirković, Miljana, Pavlović, Vladimir B., Jeremić, Dejan, Vlahović, Branislav, Đorđević, Antonije, "Multiferroic Heterostructure BaTiO3/ε-Fe2O3 Composite Obtained by in situ Reaction" in Science of Sintering, 53 (2021):1-8,
https://doi.org/10.2298/SOS2101001F .,
https://hdl.handle.net/21.15107/rcub_dais_11230 .
2
1
4

High-accuracy quasistatic numerical model for bodies of revolution tailored for RF measurements of dielectric parameters

Đorđević, Antonije; Olćan, Dragan; Petrović, Jovana; Obradović, Nina; Filipović, Suzana

(National Library of Serbia, 2021)

TY  - JOUR
AU  - Đorđević, Antonije
AU  - Olćan, Dragan
AU  - Petrović, Jovana
AU  - Obradović, Nina
AU  - Filipović, Suzana
PY  - 2021
UR  - https://dais.sanu.ac.rs/123456789/12341
AB  - We have developed rotationally symmetrical coaxial chambers for measurements of dielectric parameters of disk-shaped samples, in the frequency range from 1 MHz to several hundred MHz. The reflection coefficient of the chamber is measured and the dielectric parameters are hence extracted utilizing a high-accuracy quasistatic numerical model of the chamber and the sample. We present this model, which is based on the method-of-moments solution of a set of integral equations for composite metallic and dielectric bodies. The equations are tailored to bodies of revolution. The model is efficient and accurate so that the major contribution of the measurement uncertainty comes from the measurement hardware.
PB  - National Library of Serbia
T2  - Facta universitatis - series: Electronics and Energetics
T1  - High-accuracy quasistatic numerical model for bodies of revolution tailored for RF measurements of dielectric parameters
SP  - 141
EP  - 156
VL  - 34
IS  - 1
DO  - 10.2298/FUEE2101141D
UR  - https://hdl.handle.net/21.15107/rcub_dais_12341
ER  - 
@article{
author = "Đorđević, Antonije and Olćan, Dragan and Petrović, Jovana and Obradović, Nina and Filipović, Suzana",
year = "2021",
abstract = "We have developed rotationally symmetrical coaxial chambers for measurements of dielectric parameters of disk-shaped samples, in the frequency range from 1 MHz to several hundred MHz. The reflection coefficient of the chamber is measured and the dielectric parameters are hence extracted utilizing a high-accuracy quasistatic numerical model of the chamber and the sample. We present this model, which is based on the method-of-moments solution of a set of integral equations for composite metallic and dielectric bodies. The equations are tailored to bodies of revolution. The model is efficient and accurate so that the major contribution of the measurement uncertainty comes from the measurement hardware.",
publisher = "National Library of Serbia",
journal = "Facta universitatis - series: Electronics and Energetics",
title = "High-accuracy quasistatic numerical model for bodies of revolution tailored for RF measurements of dielectric parameters",
pages = "141-156",
volume = "34",
number = "1",
doi = "10.2298/FUEE2101141D",
url = "https://hdl.handle.net/21.15107/rcub_dais_12341"
}
Đorđević, A., Olćan, D., Petrović, J., Obradović, N.,& Filipović, S.. (2021). High-accuracy quasistatic numerical model for bodies of revolution tailored for RF measurements of dielectric parameters. in Facta universitatis - series: Electronics and Energetics
National Library of Serbia., 34(1), 141-156.
https://doi.org/10.2298/FUEE2101141D
https://hdl.handle.net/21.15107/rcub_dais_12341
Đorđević A, Olćan D, Petrović J, Obradović N, Filipović S. High-accuracy quasistatic numerical model for bodies of revolution tailored for RF measurements of dielectric parameters. in Facta universitatis - series: Electronics and Energetics. 2021;34(1):141-156.
doi:10.2298/FUEE2101141D
https://hdl.handle.net/21.15107/rcub_dais_12341 .
Đorđević, Antonije, Olćan, Dragan, Petrović, Jovana, Obradović, Nina, Filipović, Suzana, "High-accuracy quasistatic numerical model for bodies of revolution tailored for RF measurements of dielectric parameters" in Facta universitatis - series: Electronics and Energetics, 34, no. 1 (2021):141-156,
https://doi.org/10.2298/FUEE2101141D .,
https://hdl.handle.net/21.15107/rcub_dais_12341 .
3
1

Influence of Mechanical Activation on Electrical Properties of Ceramic Materials in VHF Band

Obradović, Nina; Đorđević, Antonije

(Belgrade : ETRAN, 2019)

TY  - CONF
AU  - Obradović, Nina
AU  - Đorđević, Antonije
PY  - 2019
UR  - https://dais.sanu.ac.rs/123456789/6962
AB  - Mechanical activation is commonly used as a pre-sintering process in order to enhance the reactivity of materials, reduce the particle size, increase diffusion rates, accelerate the reaction, and lower the sintering temperature. The mechanical activation can affect the final electrical and mechanical characteristics. In this paper we consider the influence of the mechanical activation on the permittivity and the loss tangent. We outline methods for evaluation of these parameters, with emphasis on our coaxial-chamber technique for measurements in the VHF band.
PB  - Belgrade : ETRAN
PB  - Belgrade : Academic Mind
C3  - Proceedings of Papers – 6th International Conference on Electrical, Electronic and Computing Engineering, IcETRAN 2019, Silver Lake, Serbia, June 03 – 06, 2019 / Zbornik radova - 63. Konferencija za elektroniku, telekomunikacije, računarstvo, automatiku i nuklearnu tehniku, Srebrno jezero, 03 – 06. juna, 2019. godine
T1  - Influence of Mechanical Activation on Electrical Properties of Ceramic Materials in VHF Band
SP  - 636
EP  - 645
UR  - https://hdl.handle.net/21.15107/rcub_dais_6962
ER  - 
@conference{
author = "Obradović, Nina and Đorđević, Antonije",
year = "2019",
abstract = "Mechanical activation is commonly used as a pre-sintering process in order to enhance the reactivity of materials, reduce the particle size, increase diffusion rates, accelerate the reaction, and lower the sintering temperature. The mechanical activation can affect the final electrical and mechanical characteristics. In this paper we consider the influence of the mechanical activation on the permittivity and the loss tangent. We outline methods for evaluation of these parameters, with emphasis on our coaxial-chamber technique for measurements in the VHF band.",
publisher = "Belgrade : ETRAN, Belgrade : Academic Mind",
journal = "Proceedings of Papers – 6th International Conference on Electrical, Electronic and Computing Engineering, IcETRAN 2019, Silver Lake, Serbia, June 03 – 06, 2019 / Zbornik radova - 63. Konferencija za elektroniku, telekomunikacije, računarstvo, automatiku i nuklearnu tehniku, Srebrno jezero, 03 – 06. juna, 2019. godine",
title = "Influence of Mechanical Activation on Electrical Properties of Ceramic Materials in VHF Band",
pages = "636-645",
url = "https://hdl.handle.net/21.15107/rcub_dais_6962"
}
Obradović, N.,& Đorđević, A.. (2019). Influence of Mechanical Activation on Electrical Properties of Ceramic Materials in VHF Band. in Proceedings of Papers – 6th International Conference on Electrical, Electronic and Computing Engineering, IcETRAN 2019, Silver Lake, Serbia, June 03 – 06, 2019 / Zbornik radova - 63. Konferencija za elektroniku, telekomunikacije, računarstvo, automatiku i nuklearnu tehniku, Srebrno jezero, 03 – 06. juna, 2019. godine
Belgrade : ETRAN., 636-645.
https://hdl.handle.net/21.15107/rcub_dais_6962
Obradović N, Đorđević A. Influence of Mechanical Activation on Electrical Properties of Ceramic Materials in VHF Band. in Proceedings of Papers – 6th International Conference on Electrical, Electronic and Computing Engineering, IcETRAN 2019, Silver Lake, Serbia, June 03 – 06, 2019 / Zbornik radova - 63. Konferencija za elektroniku, telekomunikacije, računarstvo, automatiku i nuklearnu tehniku, Srebrno jezero, 03 – 06. juna, 2019. godine. 2019;:636-645.
https://hdl.handle.net/21.15107/rcub_dais_6962 .
Obradović, Nina, Đorđević, Antonije, "Influence of Mechanical Activation on Electrical Properties of Ceramic Materials in VHF Band" in Proceedings of Papers – 6th International Conference on Electrical, Electronic and Computing Engineering, IcETRAN 2019, Silver Lake, Serbia, June 03 – 06, 2019 / Zbornik radova - 63. Konferencija za elektroniku, telekomunikacije, računarstvo, automatiku i nuklearnu tehniku, Srebrno jezero, 03 – 06. juna, 2019. godine (2019):636-645,
https://hdl.handle.net/21.15107/rcub_dais_6962 .