Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200175 (Institute of Technical Sciences of SASA, Belgrade)

Link to this page

info:eu-repo/grantAgreement/MESTD/inst-2020/200175/RS//

Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200175 (Institute of Technical Sciences of SASA, Belgrade) (en)
Ministarstvo prosvete, nauke i tehnološkog razvoja Republike Srbije, Ugovor br. 451-03-68/2020-14/200175 (Institut tehničkih nauka SANU, Beograd) (sr_RS)
Министарство просвете, науке и технолошког развоја Републике Србије, Уговор бр. 451-03-68/2020-14/200175 (Институт техничких наука САНУ, Београд) (sr)
Authors

Publications

CA and/or EDTA functionalized magnetic iron oxide nanoparticles by oxidative precipitation from FeCl2 solution: structural and magnetic study

Milić, Mirjana; Jović Orsini, Nataša; Marković, Smilja

(2024)

TY  - JOUR
AU  - Milić, Mirjana
AU  - Jović Orsini, Nataša
AU  - Marković, Smilja
PY  - 2024
UR  - https://dais.sanu.ac.rs/123456789/15767
AB  - Four samples containing magnetic iron oxide nanoparticles (MIONs) of various sizes are prepared employing a simple low-temperature method of oxidative precipitation from FeCl2∙4H2O-NaOH-NaNO3 aqueous solution. For the preparation of two samples, the usual oxidation-precipitation synthesis protocol is modified by using ethylenediaminetetraacetic acid (EDTA) chelating agent as a stabilizer of the Fe2+ ions in a solution, which results in the partial capping of the prepared MIONs with EDTA molecules. Three out of four samples are subjected to citric acid (CA) functionalization in the post synthesis protocol. Structural and magnetic properties of the synthesized MIONs are assessed using various experimental techniques (XRD, TEM, Fourier transform infrared, dynamic light scattering, Mössbauer, and SQUID). The average size of spherical-like MIONs is tuned from 7 nm to 38 nm by changing the synthesis protocol. Their room temperature saturation magnetization, M s, is in the range of 43 to 91 emu g−1. Magnetic heating ability, expressed via specific absorption rate value, which ranges from 139 to 390 W/gFe, is discussed in relation to their structural and magnetic properties and the possible energy dissipation mechanisms involved. The best heating performance is exhibited by the sample decorated with EDTA and with a bimodal size distribution with average particle sizes of 14 and 37 nm and M s = 87 emu g−1. Though this sample contains particles prone to form aggregates, capping with EDTA provides good colloidal stability of this sample, thus preserving the magnetic heating ability. It is demonstrated that two samples, consisting of 7 nm-sized CA- or 14 nm-sized EDTA/CA-functionalized superparamagnetic MIONs, with a similar hydrodynamic radius, heat in a very similar way in the relatively fast oscillating alternating current magnetic field, f = 577 kHz.
T2  - Journal of Physics D: Applied Physics
T1  - CA and/or EDTA functionalized magnetic iron oxide nanoparticles by oxidative precipitation from FeCl2 solution: structural and magnetic study
SP  - 025001
VL  - 57
IS  - 2
DO  - 10.1088/1361-6463/acff06
UR  - https://hdl.handle.net/21.15107/rcub_dais_15767
ER  - 
@article{
author = "Milić, Mirjana and Jović Orsini, Nataša and Marković, Smilja",
year = "2024",
abstract = "Four samples containing magnetic iron oxide nanoparticles (MIONs) of various sizes are prepared employing a simple low-temperature method of oxidative precipitation from FeCl2∙4H2O-NaOH-NaNO3 aqueous solution. For the preparation of two samples, the usual oxidation-precipitation synthesis protocol is modified by using ethylenediaminetetraacetic acid (EDTA) chelating agent as a stabilizer of the Fe2+ ions in a solution, which results in the partial capping of the prepared MIONs with EDTA molecules. Three out of four samples are subjected to citric acid (CA) functionalization in the post synthesis protocol. Structural and magnetic properties of the synthesized MIONs are assessed using various experimental techniques (XRD, TEM, Fourier transform infrared, dynamic light scattering, Mössbauer, and SQUID). The average size of spherical-like MIONs is tuned from 7 nm to 38 nm by changing the synthesis protocol. Their room temperature saturation magnetization, M s, is in the range of 43 to 91 emu g−1. Magnetic heating ability, expressed via specific absorption rate value, which ranges from 139 to 390 W/gFe, is discussed in relation to their structural and magnetic properties and the possible energy dissipation mechanisms involved. The best heating performance is exhibited by the sample decorated with EDTA and with a bimodal size distribution with average particle sizes of 14 and 37 nm and M s = 87 emu g−1. Though this sample contains particles prone to form aggregates, capping with EDTA provides good colloidal stability of this sample, thus preserving the magnetic heating ability. It is demonstrated that two samples, consisting of 7 nm-sized CA- or 14 nm-sized EDTA/CA-functionalized superparamagnetic MIONs, with a similar hydrodynamic radius, heat in a very similar way in the relatively fast oscillating alternating current magnetic field, f = 577 kHz.",
journal = "Journal of Physics D: Applied Physics",
title = "CA and/or EDTA functionalized magnetic iron oxide nanoparticles by oxidative precipitation from FeCl2 solution: structural and magnetic study",
pages = "025001",
volume = "57",
number = "2",
doi = "10.1088/1361-6463/acff06",
url = "https://hdl.handle.net/21.15107/rcub_dais_15767"
}
Milić, M., Jović Orsini, N.,& Marković, S.. (2024). CA and/or EDTA functionalized magnetic iron oxide nanoparticles by oxidative precipitation from FeCl2 solution: structural and magnetic study. in Journal of Physics D: Applied Physics, 57(2), 025001.
https://doi.org/10.1088/1361-6463/acff06
https://hdl.handle.net/21.15107/rcub_dais_15767
Milić M, Jović Orsini N, Marković S. CA and/or EDTA functionalized magnetic iron oxide nanoparticles by oxidative precipitation from FeCl2 solution: structural and magnetic study. in Journal of Physics D: Applied Physics. 2024;57(2):025001.
doi:10.1088/1361-6463/acff06
https://hdl.handle.net/21.15107/rcub_dais_15767 .
Milić, Mirjana, Jović Orsini, Nataša, Marković, Smilja, "CA and/or EDTA functionalized magnetic iron oxide nanoparticles by oxidative precipitation from FeCl2 solution: structural and magnetic study" in Journal of Physics D: Applied Physics, 57, no. 2 (2024):025001,
https://doi.org/10.1088/1361-6463/acff06 .,
https://hdl.handle.net/21.15107/rcub_dais_15767 .

Tailoring the ZnO/RuO2 ratio in composite electrocatalysts for efficient HER and OER

Aleksić, Katarina; Stanković, Ana; Veselinović, Ljiljana; Škapin, Srečo; Stojković Simatović, Ivana; Marković, Smilja

(Belgrade : Serbian Ceramic Society, 2023)

TY  - CONF
AU  - Aleksić, Katarina
AU  - Stanković, Ana
AU  - Veselinović, Ljiljana
AU  - Škapin, Srečo
AU  - Stojković Simatović, Ivana
AU  - Marković, Smilja
PY  - 2023
UR  - https://dais.sanu.ac.rs/123456789/15853
AB  - The increasing demand for efficient catalysts has raised concerns about the limited availability and high cost of platinum group metal (PGM) catalysts. Ruthenium dioxide (RuO2) has shown remarkable catalytic activity; however, its extensive use is hindered by its high cost. To tackle this challenge, we investigated the utilization of zinc oxide (ZnO) as a promising alternative to reduce reliance on expensive RuO2 catalysts while maintaining catalytic performance by synthesizing ZnO/RuO2 composites in various mass ratios (1:1, 2:1, 10:1) through microwave processing of a precipitate, followed by calcination at temperatures of 300 and 600 °C. The crystallinity and phase purity of the particles were analyzed using Xray powder diffraction (XRD) and Raman spectroscopy. Surface chemistry was examined by Fourier-transform infrared (FTIR) spectroscopy. Field emission scanning electron microscopy was employed to investigate the morphology and particle size. Photoluminescence and UVVis diffuse reflectance spectroscopy were utilized for analyzing the optical properties. The electrocatalytic activity of the materials were evaluated via linear sweep voltammetry in both acidic (0.1 M H2SO4) and alkaline (0.1 M NaOH) electrolytes. The ZnO/RuO2 composites exhibited outstanding catalytic performance for both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) in both types of electrolytes.
PB  - Belgrade : Serbian Ceramic Society
C3  - Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application XI New Frontiers in Multifunctional Material Science and Processing, Serbian Academy of Sciences and Art Serbia, Belgrade,18-20.September 2023
T1  - Tailoring the ZnO/RuO2 ratio in composite electrocatalysts for efficient HER and OER
SP  - 62
EP  - 62
ER  - 
@conference{
author = "Aleksić, Katarina and Stanković, Ana and Veselinović, Ljiljana and Škapin, Srečo and Stojković Simatović, Ivana and Marković, Smilja",
year = "2023",
abstract = "The increasing demand for efficient catalysts has raised concerns about the limited availability and high cost of platinum group metal (PGM) catalysts. Ruthenium dioxide (RuO2) has shown remarkable catalytic activity; however, its extensive use is hindered by its high cost. To tackle this challenge, we investigated the utilization of zinc oxide (ZnO) as a promising alternative to reduce reliance on expensive RuO2 catalysts while maintaining catalytic performance by synthesizing ZnO/RuO2 composites in various mass ratios (1:1, 2:1, 10:1) through microwave processing of a precipitate, followed by calcination at temperatures of 300 and 600 °C. The crystallinity and phase purity of the particles were analyzed using Xray powder diffraction (XRD) and Raman spectroscopy. Surface chemistry was examined by Fourier-transform infrared (FTIR) spectroscopy. Field emission scanning electron microscopy was employed to investigate the morphology and particle size. Photoluminescence and UVVis diffuse reflectance spectroscopy were utilized for analyzing the optical properties. The electrocatalytic activity of the materials were evaluated via linear sweep voltammetry in both acidic (0.1 M H2SO4) and alkaline (0.1 M NaOH) electrolytes. The ZnO/RuO2 composites exhibited outstanding catalytic performance for both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) in both types of electrolytes.",
publisher = "Belgrade : Serbian Ceramic Society",
journal = "Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application XI New Frontiers in Multifunctional Material Science and Processing, Serbian Academy of Sciences and Art Serbia, Belgrade,18-20.September 2023",
title = "Tailoring the ZnO/RuO2 ratio in composite electrocatalysts for efficient HER and OER",
pages = "62-62"
}
Aleksić, K., Stanković, A., Veselinović, L., Škapin, S., Stojković Simatović, I.,& Marković, S.. (2023). Tailoring the ZnO/RuO2 ratio in composite electrocatalysts for efficient HER and OER. in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application XI New Frontiers in Multifunctional Material Science and Processing, Serbian Academy of Sciences and Art Serbia, Belgrade,18-20.September 2023
Belgrade : Serbian Ceramic Society., 62-62.
Aleksić K, Stanković A, Veselinović L, Škapin S, Stojković Simatović I, Marković S. Tailoring the ZnO/RuO2 ratio in composite electrocatalysts for efficient HER and OER. in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application XI New Frontiers in Multifunctional Material Science and Processing, Serbian Academy of Sciences and Art Serbia, Belgrade,18-20.September 2023. 2023;:62-62..
Aleksić, Katarina, Stanković, Ana, Veselinović, Ljiljana, Škapin, Srečo, Stojković Simatović, Ivana, Marković, Smilja, "Tailoring the ZnO/RuO2 ratio in composite electrocatalysts for efficient HER and OER" in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application XI New Frontiers in Multifunctional Material Science and Processing, Serbian Academy of Sciences and Art Serbia, Belgrade,18-20.September 2023 (2023):62-62.

Structural characteristics of MgAl2O4 spinel

Peleš Tadić, Adriana; Živojinović, Jelena; Tadić, Nenad; Lević, Steva; Marković, Smilja; Pavlović, Vladimir B.; Filipović, Suzana; Obradović, Nina

(Belgrade : Serbian Ceramic Society, 2023)

TY  - CONF
AU  - Peleš Tadić, Adriana
AU  - Živojinović, Jelena
AU  - Tadić, Nenad
AU  - Lević, Steva
AU  - Marković, Smilja
AU  - Pavlović, Vladimir B.
AU  - Filipović, Suzana
AU  - Obradović, Nina
PY  - 2023
UR  - https://dais.sanu.ac.rs/123456789/15759
AB  - Magnesium aluminate spinel (MgAl2O4) is a material with good mechanical, chemical, and thermal properties, low dielectric permeability and loss tangent. Based on those properties, MgAl2O4 has found a significant application in refractory ceramics, ceramics windows, integrated electronic devices, etc. Also, it possesses a high chemical and radiation resistance. In this research, MgO was calcined at 1000ºC for an hour, with a step of 10ºC/min to avoid presence of hydroxide or carbonate. MgO and Al2O3 powders were mixed in a one-to-one molar ratio afterwards. The powders were mechanically activated for 15, 30, and 60 minutes. The mass ratio of powder and balls was 1:40. The mechanically activated powders are pressed in the tablets, under the pressure of 0.5 t. The pressed powders were heated up to 1300 ºC with a step of 10 ºC/min and held for 1 h for the reaction. Reacted pellets were crushed and sieved. Obtained spinel powders were sintered at 1450 ºC for 2 h. Both sintered and non-sintered samples were investigated by XRD and SEM. The particle size distribution of the reacted powders was investigated by laser diffraction analysis. Raman spectroscopy was used to determine the lattice vibration in the sintered samples. All results are in accordance with our previous results, and the pure dense spinel phase is obtained.
PB  - Belgrade : Serbian Ceramic Society
C3  - Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application XI New Frontiers in Multifunctional Material Science and Processing, Serbian Academy of Sciences and Art Serbia, Belgrade,18-20.September 2023
T1  - Structural characteristics of MgAl2O4 spinel
SP  - 52
EP  - 52
UR  - https://hdl.handle.net/21.15107/rcub_dais_15759
ER  - 
@conference{
author = "Peleš Tadić, Adriana and Živojinović, Jelena and Tadić, Nenad and Lević, Steva and Marković, Smilja and Pavlović, Vladimir B. and Filipović, Suzana and Obradović, Nina",
year = "2023",
abstract = "Magnesium aluminate spinel (MgAl2O4) is a material with good mechanical, chemical, and thermal properties, low dielectric permeability and loss tangent. Based on those properties, MgAl2O4 has found a significant application in refractory ceramics, ceramics windows, integrated electronic devices, etc. Also, it possesses a high chemical and radiation resistance. In this research, MgO was calcined at 1000ºC for an hour, with a step of 10ºC/min to avoid presence of hydroxide or carbonate. MgO and Al2O3 powders were mixed in a one-to-one molar ratio afterwards. The powders were mechanically activated for 15, 30, and 60 minutes. The mass ratio of powder and balls was 1:40. The mechanically activated powders are pressed in the tablets, under the pressure of 0.5 t. The pressed powders were heated up to 1300 ºC with a step of 10 ºC/min and held for 1 h for the reaction. Reacted pellets were crushed and sieved. Obtained spinel powders were sintered at 1450 ºC for 2 h. Both sintered and non-sintered samples were investigated by XRD and SEM. The particle size distribution of the reacted powders was investigated by laser diffraction analysis. Raman spectroscopy was used to determine the lattice vibration in the sintered samples. All results are in accordance with our previous results, and the pure dense spinel phase is obtained.",
publisher = "Belgrade : Serbian Ceramic Society",
journal = "Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application XI New Frontiers in Multifunctional Material Science and Processing, Serbian Academy of Sciences and Art Serbia, Belgrade,18-20.September 2023",
title = "Structural characteristics of MgAl2O4 spinel",
pages = "52-52",
url = "https://hdl.handle.net/21.15107/rcub_dais_15759"
}
Peleš Tadić, A., Živojinović, J., Tadić, N., Lević, S., Marković, S., Pavlović, V. B., Filipović, S.,& Obradović, N.. (2023). Structural characteristics of MgAl2O4 spinel. in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application XI New Frontiers in Multifunctional Material Science and Processing, Serbian Academy of Sciences and Art Serbia, Belgrade,18-20.September 2023
Belgrade : Serbian Ceramic Society., 52-52.
https://hdl.handle.net/21.15107/rcub_dais_15759
Peleš Tadić A, Živojinović J, Tadić N, Lević S, Marković S, Pavlović VB, Filipović S, Obradović N. Structural characteristics of MgAl2O4 spinel. in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application XI New Frontiers in Multifunctional Material Science and Processing, Serbian Academy of Sciences and Art Serbia, Belgrade,18-20.September 2023. 2023;:52-52.
https://hdl.handle.net/21.15107/rcub_dais_15759 .
Peleš Tadić, Adriana, Živojinović, Jelena, Tadić, Nenad, Lević, Steva, Marković, Smilja, Pavlović, Vladimir B., Filipović, Suzana, Obradović, Nina, "Structural characteristics of MgAl2O4 spinel" in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application XI New Frontiers in Multifunctional Material Science and Processing, Serbian Academy of Sciences and Art Serbia, Belgrade,18-20.September 2023 (2023):52-52,
https://hdl.handle.net/21.15107/rcub_dais_15759 .

Selenium nanoparticles: Effects of particle properties on biological activity

Filipović, Nenad; Tomić, Nina; Kuzmanović, Maja; Stojanović, Zoran; Stevanović, Magdalena

(Ljubljana : Inštitut za kovinske materiale in tehnologije, 2023)

TY  - CONF
AU  - Filipović, Nenad
AU  - Tomić, Nina
AU  - Kuzmanović, Maja
AU  - Stojanović, Zoran
AU  - Stevanović, Magdalena
PY  - 2023
UR  - https://dais.sanu.ac.rs/123456789/15762
AB  - Nanotechnology, as a most promising approach in material science, has resulted in numerous enhancements and breakthroughs in diverse scientific fields. One of the examples is selenium nanoparticles (SeNPs) which emerged as a new form with some improved properties compared to other Se forms. Among these properties, anticancer, antimicrobial, antioxidative, and reduced toxicity are the most interesting from the aspect of biomedical applications. Due to simplicity, short duration, scalability, and reproducibility, chemical reduction is a synthesis technique very often applied in SeNPs production. The choice of reducing agents, their molar ratio with a precursor, and the choice of stabilizing agents are recognized as determining parameters for the application efficiency of designed SeNPs.
This presentation includes an overview of the results of SeNPs obtained by the reduction of sodium selenite and stabilized with different agents. Furthermore, the effects of synthesis parameters on the properties of obtained particles (size, morphology, crystallinity, stability, surface chemistry) and biological activities such as antimicrobial, antioxidative, and cytotoxicity will be elaborate. In addition, some potential applications of SeNPs will be discussed, with particular reference to the results of in vivo experiments.
PB  - Ljubljana : Inštitut za kovinske materiale in tehnologije
C3  - 28. Mednarodna konferenca o materialih in tehnologijah = 28th International Conference on Materials and Technology
T1  - Selenium nanoparticles: Effects of particle properties on biological activity
SP  - 32
EP  - 32
UR  - https://hdl.handle.net/21.15107/rcub_dais_15762
ER  - 
@conference{
author = "Filipović, Nenad and Tomić, Nina and Kuzmanović, Maja and Stojanović, Zoran and Stevanović, Magdalena",
year = "2023",
abstract = "Nanotechnology, as a most promising approach in material science, has resulted in numerous enhancements and breakthroughs in diverse scientific fields. One of the examples is selenium nanoparticles (SeNPs) which emerged as a new form with some improved properties compared to other Se forms. Among these properties, anticancer, antimicrobial, antioxidative, and reduced toxicity are the most interesting from the aspect of biomedical applications. Due to simplicity, short duration, scalability, and reproducibility, chemical reduction is a synthesis technique very often applied in SeNPs production. The choice of reducing agents, their molar ratio with a precursor, and the choice of stabilizing agents are recognized as determining parameters for the application efficiency of designed SeNPs.
This presentation includes an overview of the results of SeNPs obtained by the reduction of sodium selenite and stabilized with different agents. Furthermore, the effects of synthesis parameters on the properties of obtained particles (size, morphology, crystallinity, stability, surface chemistry) and biological activities such as antimicrobial, antioxidative, and cytotoxicity will be elaborate. In addition, some potential applications of SeNPs will be discussed, with particular reference to the results of in vivo experiments.",
publisher = "Ljubljana : Inštitut za kovinske materiale in tehnologije",
journal = "28. Mednarodna konferenca o materialih in tehnologijah = 28th International Conference on Materials and Technology",
title = "Selenium nanoparticles: Effects of particle properties on biological activity",
pages = "32-32",
url = "https://hdl.handle.net/21.15107/rcub_dais_15762"
}
Filipović, N., Tomić, N., Kuzmanović, M., Stojanović, Z.,& Stevanović, M.. (2023). Selenium nanoparticles: Effects of particle properties on biological activity. in 28. Mednarodna konferenca o materialih in tehnologijah = 28th International Conference on Materials and Technology
Ljubljana : Inštitut za kovinske materiale in tehnologije., 32-32.
https://hdl.handle.net/21.15107/rcub_dais_15762
Filipović N, Tomić N, Kuzmanović M, Stojanović Z, Stevanović M. Selenium nanoparticles: Effects of particle properties on biological activity. in 28. Mednarodna konferenca o materialih in tehnologijah = 28th International Conference on Materials and Technology. 2023;:32-32.
https://hdl.handle.net/21.15107/rcub_dais_15762 .
Filipović, Nenad, Tomić, Nina, Kuzmanović, Maja, Stojanović, Zoran, Stevanović, Magdalena, "Selenium nanoparticles: Effects of particle properties on biological activity" in 28. Mednarodna konferenca o materialih in tehnologijah = 28th International Conference on Materials and Technology (2023):32-32,
https://hdl.handle.net/21.15107/rcub_dais_15762 .

The osteogenic effect of Germanium-doped hydroxyapatite nanoparticles on dental pulp stem cells

Lazarević, Miloš M.; Ignjatović, Nenad; Uskoković, Dragan; Uskoković, Vuk

(Belgrade : Serbian Ceramic Society, 2023)

TY  - CONF
AU  - Lazarević, Miloš M.
AU  - Ignjatović, Nenad
AU  - Uskoković, Dragan
AU  - Uskoković, Vuk
PY  - 2023
UR  - https://dais.sanu.ac.rs/123456789/15765
AB  - Most of the applications for various forms of ion-doped hydroxyapatite have been geared towards pharmacy, dentistry and medicine. This study presents the first biological, response to germanium-doped hydroxyapatite (Ge-HAp). Viability, osteogenic differentiation induction and colony formation potential of dental pulp stem cells (DPSCs) in the presence of Ge-HAp and pure, Ge-free HAp nanoparticles was assessed. DPSCs were isolated from semiimpacted wisdom teeth extracted from systemically sound patients. MTT was used to determine cell viability after 1, 3, and 7 days of incubation. The effect of Ge-HAp on the expression level of osteodifferentiation markers (RUNX2, ALP, and OCN) was determined using RT-qPCR, and mineralized nodule formation was confirmed using Alizarin Red S staining. The colony-forming unit assay was utilized to evaluate the colony-formation potential of the DPSC. Low dosages of Ge-HAp increased cell viability compared to HAp after a week. Ge-HAp increased cell culture mineralization more than HAp. Ge-HAp substantially upregulated all three osteogenic markers relative to control and Ge-free HApexposed cells. HAp and especially Ge-HAp hindered stem cell colony formation. As demonstrated above, Ge-doped HAp nanoparticles have great promise in regenerative medicine due to their biocompatibility and osteoinductivity.
PB  - Belgrade : Serbian Ceramic Society
C3  - Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application XI New Frontiers in Multifunctional Material Science and Processing, Serbian Academy of Sciences and Art Serbia, Belgrade,18-20.September 2023
T1  - The osteogenic effect of Germanium-doped hydroxyapatite nanoparticles on dental pulp stem cells
SP  - 67
EP  - 67
UR  - https://hdl.handle.net/21.15107/rcub_dais_15765
ER  - 
@conference{
author = "Lazarević, Miloš M. and Ignjatović, Nenad and Uskoković, Dragan and Uskoković, Vuk",
year = "2023",
abstract = "Most of the applications for various forms of ion-doped hydroxyapatite have been geared towards pharmacy, dentistry and medicine. This study presents the first biological, response to germanium-doped hydroxyapatite (Ge-HAp). Viability, osteogenic differentiation induction and colony formation potential of dental pulp stem cells (DPSCs) in the presence of Ge-HAp and pure, Ge-free HAp nanoparticles was assessed. DPSCs were isolated from semiimpacted wisdom teeth extracted from systemically sound patients. MTT was used to determine cell viability after 1, 3, and 7 days of incubation. The effect of Ge-HAp on the expression level of osteodifferentiation markers (RUNX2, ALP, and OCN) was determined using RT-qPCR, and mineralized nodule formation was confirmed using Alizarin Red S staining. The colony-forming unit assay was utilized to evaluate the colony-formation potential of the DPSC. Low dosages of Ge-HAp increased cell viability compared to HAp after a week. Ge-HAp increased cell culture mineralization more than HAp. Ge-HAp substantially upregulated all three osteogenic markers relative to control and Ge-free HApexposed cells. HAp and especially Ge-HAp hindered stem cell colony formation. As demonstrated above, Ge-doped HAp nanoparticles have great promise in regenerative medicine due to their biocompatibility and osteoinductivity.",
publisher = "Belgrade : Serbian Ceramic Society",
journal = "Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application XI New Frontiers in Multifunctional Material Science and Processing, Serbian Academy of Sciences and Art Serbia, Belgrade,18-20.September 2023",
title = "The osteogenic effect of Germanium-doped hydroxyapatite nanoparticles on dental pulp stem cells",
pages = "67-67",
url = "https://hdl.handle.net/21.15107/rcub_dais_15765"
}
Lazarević, M. M., Ignjatović, N., Uskoković, D.,& Uskoković, V.. (2023). The osteogenic effect of Germanium-doped hydroxyapatite nanoparticles on dental pulp stem cells. in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application XI New Frontiers in Multifunctional Material Science and Processing, Serbian Academy of Sciences and Art Serbia, Belgrade,18-20.September 2023
Belgrade : Serbian Ceramic Society., 67-67.
https://hdl.handle.net/21.15107/rcub_dais_15765
Lazarević MM, Ignjatović N, Uskoković D, Uskoković V. The osteogenic effect of Germanium-doped hydroxyapatite nanoparticles on dental pulp stem cells. in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application XI New Frontiers in Multifunctional Material Science and Processing, Serbian Academy of Sciences and Art Serbia, Belgrade,18-20.September 2023. 2023;:67-67.
https://hdl.handle.net/21.15107/rcub_dais_15765 .
Lazarević, Miloš M., Ignjatović, Nenad, Uskoković, Dragan, Uskoković, Vuk, "The osteogenic effect of Germanium-doped hydroxyapatite nanoparticles on dental pulp stem cells" in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application XI New Frontiers in Multifunctional Material Science and Processing, Serbian Academy of Sciences and Art Serbia, Belgrade,18-20.September 2023 (2023):67-67,
https://hdl.handle.net/21.15107/rcub_dais_15765 .

Fine-Tuning and Performance Testing of Pre-Trained Large Language Models for Applications in Domain of Biomedical Materials Synthesis

Stojanović, Zoran; Kuzmanović, Maja; Stevanović, Magdalena

(Ljubljana : Inštitut za kovinske materiale in tehnologije, 2023)

TY  - CONF
AU  - Stojanović, Zoran
AU  - Kuzmanović, Maja
AU  - Stevanović, Magdalena
PY  - 2023
UR  - https://dais.sanu.ac.rs/123456789/15763
AB  - Large language models (LLMs) like Generative pre-trained transformers (GPTs) emerged in past couple of years with increase of computational power. These models are used for various tasks in field of natural language processing, such as text classification, question answering and language translation. In this talk, research methodology, practical aspects and performance testing of fine – tuned LLMs, both commercial and open source in domain of materials synthesis, will be covered. So far, LLMs seems to have promising future in education, research and production only integrated with other chemistry tools, thus further development of integrated AI systems as well as LLMs is necessary to enhance performances and meet future demands.
PB  - Ljubljana : Inštitut za kovinske materiale in tehnologije
C3  - 28. Mednarodna konferenca o materialih in tehnologijah = 28th International Conference on Materials and Technology
T1  - Fine-Tuning and Performance Testing of Pre-Trained Large Language Models for Applications in Domain of Biomedical Materials Synthesis
SP  - 78
EP  - 78
UR  - https://hdl.handle.net/21.15107/rcub_dais_15763
ER  - 
@conference{
author = "Stojanović, Zoran and Kuzmanović, Maja and Stevanović, Magdalena",
year = "2023",
abstract = "Large language models (LLMs) like Generative pre-trained transformers (GPTs) emerged in past couple of years with increase of computational power. These models are used for various tasks in field of natural language processing, such as text classification, question answering and language translation. In this talk, research methodology, practical aspects and performance testing of fine – tuned LLMs, both commercial and open source in domain of materials synthesis, will be covered. So far, LLMs seems to have promising future in education, research and production only integrated with other chemistry tools, thus further development of integrated AI systems as well as LLMs is necessary to enhance performances and meet future demands.",
publisher = "Ljubljana : Inštitut za kovinske materiale in tehnologije",
journal = "28. Mednarodna konferenca o materialih in tehnologijah = 28th International Conference on Materials and Technology",
title = "Fine-Tuning and Performance Testing of Pre-Trained Large Language Models for Applications in Domain of Biomedical Materials Synthesis",
pages = "78-78",
url = "https://hdl.handle.net/21.15107/rcub_dais_15763"
}
Stojanović, Z., Kuzmanović, M.,& Stevanović, M.. (2023). Fine-Tuning and Performance Testing of Pre-Trained Large Language Models for Applications in Domain of Biomedical Materials Synthesis. in 28. Mednarodna konferenca o materialih in tehnologijah = 28th International Conference on Materials and Technology
Ljubljana : Inštitut za kovinske materiale in tehnologije., 78-78.
https://hdl.handle.net/21.15107/rcub_dais_15763
Stojanović Z, Kuzmanović M, Stevanović M. Fine-Tuning and Performance Testing of Pre-Trained Large Language Models for Applications in Domain of Biomedical Materials Synthesis. in 28. Mednarodna konferenca o materialih in tehnologijah = 28th International Conference on Materials and Technology. 2023;:78-78.
https://hdl.handle.net/21.15107/rcub_dais_15763 .
Stojanović, Zoran, Kuzmanović, Maja, Stevanović, Magdalena, "Fine-Tuning and Performance Testing of Pre-Trained Large Language Models for Applications in Domain of Biomedical Materials Synthesis" in 28. Mednarodna konferenca o materialih in tehnologijah = 28th International Conference on Materials and Technology (2023):78-78,
https://hdl.handle.net/21.15107/rcub_dais_15763 .

Antioxidative Resveratrol Particles as a Bioactive Component for Material Design

Tomić, Nina; Filipović, Nenad; Mitić Ćulafić, Dragana; Stevanović, Magdalena

(Ljubljana : Inštitut za kovinske materiale in tehnologije, 2023)

TY  - CONF
AU  - Tomić, Nina
AU  - Filipović, Nenad
AU  - Mitić Ćulafić, Dragana
AU  - Stevanović, Magdalena
PY  - 2023
UR  - https://dais.sanu.ac.rs/123456789/15749
AB  - There is a growing need for multifunctional components in material design, especially in tissue engineering. Among many natural compounds, polyphenols are gaining interest as biologically active additives of novel materials. Stilbenoid polyphenol resveratrol is one of the most known, mainly because of its antioxidative, antibacterial, anticancer, neuroprotective and other beneficial effects. To allow most efficient use of resveratrol, several nanoformulations have shown promise, but most of them also involve other, toxic or expensive compounds, beside resveratrol. During our research, we synthetized particles of pure resveratrol, in an elongated, nanobelt-like form. The shape of the particles, as well as absence of any polymer or other carriers makes these particles easy to handle for further implementation. For preliminary assessment of the functionality of these particles, several assays were employed. DPPH, TBA and FRAP assay proved antioxidative potential of obtained particles by several mechanisms in the concentration range from 1 μg/mL to 10 μg/mL. Artemia salina in vivo bioassay was used to show high bioactivity and also biocompatibility of the particle suspension. All of the results indicated that there is a high potential for use of these resv
PB  - Ljubljana : Inštitut za kovinske materiale in tehnologije
C3  - 28. Mednarodna konferenca o materialih in tehnologijah = 28th International Conference on Materials and Technology
T1  - Antioxidative Resveratrol Particles as a Bioactive Component for Material Design
SP  - 87
EP  - 87
UR  - https://hdl.handle.net/21.15107/rcub_dais_15749
ER  - 
@conference{
author = "Tomić, Nina and Filipović, Nenad and Mitić Ćulafić, Dragana and Stevanović, Magdalena",
year = "2023",
abstract = "There is a growing need for multifunctional components in material design, especially in tissue engineering. Among many natural compounds, polyphenols are gaining interest as biologically active additives of novel materials. Stilbenoid polyphenol resveratrol is one of the most known, mainly because of its antioxidative, antibacterial, anticancer, neuroprotective and other beneficial effects. To allow most efficient use of resveratrol, several nanoformulations have shown promise, but most of them also involve other, toxic or expensive compounds, beside resveratrol. During our research, we synthetized particles of pure resveratrol, in an elongated, nanobelt-like form. The shape of the particles, as well as absence of any polymer or other carriers makes these particles easy to handle for further implementation. For preliminary assessment of the functionality of these particles, several assays were employed. DPPH, TBA and FRAP assay proved antioxidative potential of obtained particles by several mechanisms in the concentration range from 1 μg/mL to 10 μg/mL. Artemia salina in vivo bioassay was used to show high bioactivity and also biocompatibility of the particle suspension. All of the results indicated that there is a high potential for use of these resv",
publisher = "Ljubljana : Inštitut za kovinske materiale in tehnologije",
journal = "28. Mednarodna konferenca o materialih in tehnologijah = 28th International Conference on Materials and Technology",
title = "Antioxidative Resveratrol Particles as a Bioactive Component for Material Design",
pages = "87-87",
url = "https://hdl.handle.net/21.15107/rcub_dais_15749"
}
Tomić, N., Filipović, N., Mitić Ćulafić, D.,& Stevanović, M.. (2023). Antioxidative Resveratrol Particles as a Bioactive Component for Material Design. in 28. Mednarodna konferenca o materialih in tehnologijah = 28th International Conference on Materials and Technology
Ljubljana : Inštitut za kovinske materiale in tehnologije., 87-87.
https://hdl.handle.net/21.15107/rcub_dais_15749
Tomić N, Filipović N, Mitić Ćulafić D, Stevanović M. Antioxidative Resveratrol Particles as a Bioactive Component for Material Design. in 28. Mednarodna konferenca o materialih in tehnologijah = 28th International Conference on Materials and Technology. 2023;:87-87.
https://hdl.handle.net/21.15107/rcub_dais_15749 .
Tomić, Nina, Filipović, Nenad, Mitić Ćulafić, Dragana, Stevanović, Magdalena, "Antioxidative Resveratrol Particles as a Bioactive Component for Material Design" in 28. Mednarodna konferenca o materialih in tehnologijah = 28th International Conference on Materials and Technology (2023):87-87,
https://hdl.handle.net/21.15107/rcub_dais_15749 .

Dielectric and Structural Properties of the Hybrid Material Polyvinylidene Fluoride-Bacterial Nanocellulose-Based Composite

Janićijević, Aleksandra; Filipović, Suzana; Sknepnek, Aleksandra; Vlahović, Branislav; Đorđević, Nenad; Kovacević, Danijela; Mirković, Miljana; Petronijević, Ivan; Živković, Predrag; Rogan, Jelena; Pavlović, Vladimir B.

(Basel : MDPI, 2023)

TY  - JOUR
AU  - Janićijević, Aleksandra
AU  - Filipović, Suzana
AU  - Sknepnek, Aleksandra
AU  - Vlahović, Branislav
AU  - Đorđević, Nenad
AU  - Kovacević, Danijela
AU  - Mirković, Miljana
AU  - Petronijević, Ivan
AU  - Živković, Predrag
AU  - Rogan, Jelena
AU  - Pavlović, Vladimir B.
PY  - 2023
UR  - https://dais.sanu.ac.rs/123456789/15363
AB  - In the search for environmentally friendly materials with a wide range of properties, polymer composites have emerged as a promising alternative due to their multifunctional properties. This study focuses on the synthesis of composite materials consisting of four components: bacterial nanocellulose (BNC) modified with magnetic Fe3O4, and a mixture of BaTiO3 (BT) and polyvinylidene fluoride (PVDF). The BT powder was mechanically activated prior to mixing with PVDF. The influence of BT mechanical activation and BNC with magnetic particles on the PVDF matrix was investigated. The obtained composite films’ structural characteristics, morphology, and dielectric properties are presented. This research provides insights into the relationship between mechanical activation of the filler and structural and dielectric properties in the PVDF/BT/BNC/Fe3O4 system, creating the way for the development of materials with a wide range of diverse properties that support the concept of green technologies.
PB  - Basel : MDPI
T2  - Polymers
T1  - Dielectric and Structural Properties of the Hybrid Material Polyvinylidene Fluoride-Bacterial Nanocellulose-Based Composite
SP  - 4080
VL  - 15
IS  - 20
DO  - 10.3390/polym15204080
UR  - https://hdl.handle.net/21.15107/rcub_dais_15363
ER  - 
@article{
author = "Janićijević, Aleksandra and Filipović, Suzana and Sknepnek, Aleksandra and Vlahović, Branislav and Đorđević, Nenad and Kovacević, Danijela and Mirković, Miljana and Petronijević, Ivan and Živković, Predrag and Rogan, Jelena and Pavlović, Vladimir B.",
year = "2023",
abstract = "In the search for environmentally friendly materials with a wide range of properties, polymer composites have emerged as a promising alternative due to their multifunctional properties. This study focuses on the synthesis of composite materials consisting of four components: bacterial nanocellulose (BNC) modified with magnetic Fe3O4, and a mixture of BaTiO3 (BT) and polyvinylidene fluoride (PVDF). The BT powder was mechanically activated prior to mixing with PVDF. The influence of BT mechanical activation and BNC with magnetic particles on the PVDF matrix was investigated. The obtained composite films’ structural characteristics, morphology, and dielectric properties are presented. This research provides insights into the relationship between mechanical activation of the filler and structural and dielectric properties in the PVDF/BT/BNC/Fe3O4 system, creating the way for the development of materials with a wide range of diverse properties that support the concept of green technologies.",
publisher = "Basel : MDPI",
journal = "Polymers",
title = "Dielectric and Structural Properties of the Hybrid Material Polyvinylidene Fluoride-Bacterial Nanocellulose-Based Composite",
pages = "4080",
volume = "15",
number = "20",
doi = "10.3390/polym15204080",
url = "https://hdl.handle.net/21.15107/rcub_dais_15363"
}
Janićijević, A., Filipović, S., Sknepnek, A., Vlahović, B., Đorđević, N., Kovacević, D., Mirković, M., Petronijević, I., Živković, P., Rogan, J.,& Pavlović, V. B.. (2023). Dielectric and Structural Properties of the Hybrid Material Polyvinylidene Fluoride-Bacterial Nanocellulose-Based Composite. in Polymers
Basel : MDPI., 15(20), 4080.
https://doi.org/10.3390/polym15204080
https://hdl.handle.net/21.15107/rcub_dais_15363
Janićijević A, Filipović S, Sknepnek A, Vlahović B, Đorđević N, Kovacević D, Mirković M, Petronijević I, Živković P, Rogan J, Pavlović VB. Dielectric and Structural Properties of the Hybrid Material Polyvinylidene Fluoride-Bacterial Nanocellulose-Based Composite. in Polymers. 2023;15(20):4080.
doi:10.3390/polym15204080
https://hdl.handle.net/21.15107/rcub_dais_15363 .
Janićijević, Aleksandra, Filipović, Suzana, Sknepnek, Aleksandra, Vlahović, Branislav, Đorđević, Nenad, Kovacević, Danijela, Mirković, Miljana, Petronijević, Ivan, Živković, Predrag, Rogan, Jelena, Pavlović, Vladimir B., "Dielectric and Structural Properties of the Hybrid Material Polyvinylidene Fluoride-Bacterial Nanocellulose-Based Composite" in Polymers, 15, no. 20 (2023):4080,
https://doi.org/10.3390/polym15204080 .,
https://hdl.handle.net/21.15107/rcub_dais_15363 .

Synthesis and characterization of innovative resveratrol nanobelt-like particles and assessment of their bioactivity, antioxidative and antibacterial properties

Tomić, Nina; Matić, Tamara; Filipović, Nenad; Mitić Ćulafić, Dragana; Boccacccini, Aldo R.; Stevanović, Magdalena

(SAGE Publications Ltd., 2023)

TY  - JOUR
AU  - Tomić, Nina
AU  - Matić, Tamara
AU  - Filipović, Nenad
AU  - Mitić Ćulafić, Dragana
AU  - Boccacccini, Aldo R.
AU  - Stevanović, Magdalena
PY  - 2023
UR  - https://dais.sanu.ac.rs/123456789/14705
AB  - Recently, many studies have shown various beneficial effects of polyphenol resveratrol (Res) on human health. The most important of these effects include cardioprotective, neuroprotective, anti-cancer, anti-inflammatory, osteoinductive, and anti-microbial effects. Resveratrol has cis and trans isoforms, with the trans isoform being more stable and biologically active. Despite the results of in vitro experiments, resveratrol has limited potential for application in vivo due to its poor water solubility, sensitivity to oxygen, light, and heat, rapid metabolism, and therefore low bioavailability. The possible solution to overcome these limitations could be the synthesis of resveratrol in nanoparticle form. Accordingly, in this study, we have developed a simple, green solvent/non-solvent physicochemical method to synthesize stable, uniform, carrier-free resveratrol nanobelt-like particles (ResNPs) for applications in tissue engineering. UV–visible spectroscopy (UV-Vis) was used to identify the trans isoform of ResNPs which remained stable for at least 63 days. The additional qualitative analysis was performed by Fourier transform infrared spectroscopy (FTIR), while X-ray diffraction (XRD) determined the monoclinic structure of resveratrol with a significant difference in the intensity of diffraction peaks between commercial and nano-belt form. The morphology of ResNPs was evaluated by optical microscopy and field-emission scanning electron microscope (FE-SEM) that revealed a uniform nanobelt-like structure with an individual thickness of less than 1 μm. Bioactivity was confirmed using Artemia salina in vivo toxicity assay, while 2,2–diphenyl-1-picrylhydrazylhydrate (DPPH) reduction assay showed the good antioxidative potential of concentrations of 100 μg/ml and lower. Microdilution assay on several reference strains and clinical isolates showed promising antibacterial potential on Staphylococci, with minimal inhibitory concentration (MIC) being 800 μg/ml. Bioactive glass-based scaffolds were coated with ResNPs and characterized to confirm coating potential. All of the above make these particles a promising bioactive, easy-to-handle component in various biomaterial formulations.
PB  - SAGE Publications Ltd.
T2  - Journal of Biomaterials Applications
T1  - Synthesis and characterization of innovative resveratrol nanobelt-like particles and assessment of their bioactivity, antioxidative and antibacterial properties
SP  - 122
EP  - 133
VL  - 38
IS  - 1
DO  - 10.1177/08853282231183109
UR  - https://hdl.handle.net/21.15107/rcub_dais_14705
ER  - 
@article{
author = "Tomić, Nina and Matić, Tamara and Filipović, Nenad and Mitić Ćulafić, Dragana and Boccacccini, Aldo R. and Stevanović, Magdalena",
year = "2023",
abstract = "Recently, many studies have shown various beneficial effects of polyphenol resveratrol (Res) on human health. The most important of these effects include cardioprotective, neuroprotective, anti-cancer, anti-inflammatory, osteoinductive, and anti-microbial effects. Resveratrol has cis and trans isoforms, with the trans isoform being more stable and biologically active. Despite the results of in vitro experiments, resveratrol has limited potential for application in vivo due to its poor water solubility, sensitivity to oxygen, light, and heat, rapid metabolism, and therefore low bioavailability. The possible solution to overcome these limitations could be the synthesis of resveratrol in nanoparticle form. Accordingly, in this study, we have developed a simple, green solvent/non-solvent physicochemical method to synthesize stable, uniform, carrier-free resveratrol nanobelt-like particles (ResNPs) for applications in tissue engineering. UV–visible spectroscopy (UV-Vis) was used to identify the trans isoform of ResNPs which remained stable for at least 63 days. The additional qualitative analysis was performed by Fourier transform infrared spectroscopy (FTIR), while X-ray diffraction (XRD) determined the monoclinic structure of resveratrol with a significant difference in the intensity of diffraction peaks between commercial and nano-belt form. The morphology of ResNPs was evaluated by optical microscopy and field-emission scanning electron microscope (FE-SEM) that revealed a uniform nanobelt-like structure with an individual thickness of less than 1 μm. Bioactivity was confirmed using Artemia salina in vivo toxicity assay, while 2,2–diphenyl-1-picrylhydrazylhydrate (DPPH) reduction assay showed the good antioxidative potential of concentrations of 100 μg/ml and lower. Microdilution assay on several reference strains and clinical isolates showed promising antibacterial potential on Staphylococci, with minimal inhibitory concentration (MIC) being 800 μg/ml. Bioactive glass-based scaffolds were coated with ResNPs and characterized to confirm coating potential. All of the above make these particles a promising bioactive, easy-to-handle component in various biomaterial formulations.",
publisher = "SAGE Publications Ltd.",
journal = "Journal of Biomaterials Applications",
title = "Synthesis and characterization of innovative resveratrol nanobelt-like particles and assessment of their bioactivity, antioxidative and antibacterial properties",
pages = "122-133",
volume = "38",
number = "1",
doi = "10.1177/08853282231183109",
url = "https://hdl.handle.net/21.15107/rcub_dais_14705"
}
Tomić, N., Matić, T., Filipović, N., Mitić Ćulafić, D., Boccacccini, A. R.,& Stevanović, M.. (2023). Synthesis and characterization of innovative resveratrol nanobelt-like particles and assessment of their bioactivity, antioxidative and antibacterial properties. in Journal of Biomaterials Applications
SAGE Publications Ltd.., 38(1), 122-133.
https://doi.org/10.1177/08853282231183109
https://hdl.handle.net/21.15107/rcub_dais_14705
Tomić N, Matić T, Filipović N, Mitić Ćulafić D, Boccacccini AR, Stevanović M. Synthesis and characterization of innovative resveratrol nanobelt-like particles and assessment of their bioactivity, antioxidative and antibacterial properties. in Journal of Biomaterials Applications. 2023;38(1):122-133.
doi:10.1177/08853282231183109
https://hdl.handle.net/21.15107/rcub_dais_14705 .
Tomić, Nina, Matić, Tamara, Filipović, Nenad, Mitić Ćulafić, Dragana, Boccacccini, Aldo R., Stevanović, Magdalena, "Synthesis and characterization of innovative resveratrol nanobelt-like particles and assessment of their bioactivity, antioxidative and antibacterial properties" in Journal of Biomaterials Applications, 38, no. 1 (2023):122-133,
https://doi.org/10.1177/08853282231183109 .,
https://hdl.handle.net/21.15107/rcub_dais_14705 .
1

One-Step Synthesis of Biocompatible NaY0.65Gd0.15F4:Yb,Er Upconverting Nanoparticles for In Vitro Cell Imaging

Tomić, Nina; Vuković, Marina; Bukumira, Marta; Rabasović, Mihailo; Mančić, Lidija

(Belgrade : Serbian Ceramic Society, 2023)

TY  - CONF
AU  - Tomić, Nina
AU  - Vuković, Marina
AU  - Bukumira, Marta
AU  - Rabasović, Mihailo
AU  - Mančić, Lidija
PY  - 2023
UR  - https://dais.sanu.ac.rs/123456789/15155
AB  - There is a great technological interest in synthesis of lanthanide doped upconverting nanoparticles (UCNPs) with controlled crystal phase, morphology and intense luminescence properties suitable for biomedical use. A conventional approach for synthesis of such particles comprises decomposition of organometallic compounds in an oxygen-free environment, followed either with a ligand exchange, or biocompatible layer coating. Biocompatible NaY0.65Gd0.15F4:Yb,Er nanoparticles used in this study were synthesized through chitosan assisted one-pot hydrothermal synthesis and were characterized by X-ray powder diffraction (XRPD), Fourier-transform infrared (FTIR) spectroscopy, scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (SEM/EDS) and photoluminescence measurement (PL). Due to the presence of the amino groups at their surface, excellent biocompatibility and notably low cytotoxicity against MRC-5 cells (line of normal human fibroblasts) and A549 cells (human lung cancer cells) were detected using MTT assay. Furthermore, upon 980 nm laser irradiation, particles were successfully used in vitro for labeling of both, MRC-5 and A549 cells.
PB  - Belgrade : Serbian Ceramic Society
C3  - Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application XI New Frontiers in Multifunctional Material Science and Processing, Serbian Academy of Sciences and Art Serbia, Belgrade,18-20.September 2023
T1  - One-Step Synthesis of Biocompatible NaY0.65Gd0.15F4:Yb,Er Upconverting Nanoparticles for In Vitro Cell Imaging
SP  - 70
EP  - 70
UR  - https://hdl.handle.net/21.15107/rcub_dais_15155
ER  - 
@conference{
author = "Tomić, Nina and Vuković, Marina and Bukumira, Marta and Rabasović, Mihailo and Mančić, Lidija",
year = "2023",
abstract = "There is a great technological interest in synthesis of lanthanide doped upconverting nanoparticles (UCNPs) with controlled crystal phase, morphology and intense luminescence properties suitable for biomedical use. A conventional approach for synthesis of such particles comprises decomposition of organometallic compounds in an oxygen-free environment, followed either with a ligand exchange, or biocompatible layer coating. Biocompatible NaY0.65Gd0.15F4:Yb,Er nanoparticles used in this study were synthesized through chitosan assisted one-pot hydrothermal synthesis and were characterized by X-ray powder diffraction (XRPD), Fourier-transform infrared (FTIR) spectroscopy, scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (SEM/EDS) and photoluminescence measurement (PL). Due to the presence of the amino groups at their surface, excellent biocompatibility and notably low cytotoxicity against MRC-5 cells (line of normal human fibroblasts) and A549 cells (human lung cancer cells) were detected using MTT assay. Furthermore, upon 980 nm laser irradiation, particles were successfully used in vitro for labeling of both, MRC-5 and A549 cells.",
publisher = "Belgrade : Serbian Ceramic Society",
journal = "Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application XI New Frontiers in Multifunctional Material Science and Processing, Serbian Academy of Sciences and Art Serbia, Belgrade,18-20.September 2023",
title = "One-Step Synthesis of Biocompatible NaY0.65Gd0.15F4:Yb,Er Upconverting Nanoparticles for In Vitro Cell Imaging",
pages = "70-70",
url = "https://hdl.handle.net/21.15107/rcub_dais_15155"
}
Tomić, N., Vuković, M., Bukumira, M., Rabasović, M.,& Mančić, L.. (2023). One-Step Synthesis of Biocompatible NaY0.65Gd0.15F4:Yb,Er Upconverting Nanoparticles for In Vitro Cell Imaging. in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application XI New Frontiers in Multifunctional Material Science and Processing, Serbian Academy of Sciences and Art Serbia, Belgrade,18-20.September 2023
Belgrade : Serbian Ceramic Society., 70-70.
https://hdl.handle.net/21.15107/rcub_dais_15155
Tomić N, Vuković M, Bukumira M, Rabasović M, Mančić L. One-Step Synthesis of Biocompatible NaY0.65Gd0.15F4:Yb,Er Upconverting Nanoparticles for In Vitro Cell Imaging. in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application XI New Frontiers in Multifunctional Material Science and Processing, Serbian Academy of Sciences and Art Serbia, Belgrade,18-20.September 2023. 2023;:70-70.
https://hdl.handle.net/21.15107/rcub_dais_15155 .
Tomić, Nina, Vuković, Marina, Bukumira, Marta, Rabasović, Mihailo, Mančić, Lidija, "One-Step Synthesis of Biocompatible NaY0.65Gd0.15F4:Yb,Er Upconverting Nanoparticles for In Vitro Cell Imaging" in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application XI New Frontiers in Multifunctional Material Science and Processing, Serbian Academy of Sciences and Art Serbia, Belgrade,18-20.September 2023 (2023):70-70,
https://hdl.handle.net/21.15107/rcub_dais_15155 .

Synthesis and characterization of innovative resveratrol nanobelt-like particles and assessment of their bioactivity, antioxidative and antibacterial properties

Tomić, Nina; Matić, Tamara; Filipović, Nenad; Mitić Ćulafić, Dragana; Boccacccini, Aldo R.; Stevanović, Magdalena

(SAGE Publications Ltd., 2023)

TY  - JOUR
AU  - Tomić, Nina
AU  - Matić, Tamara
AU  - Filipović, Nenad
AU  - Mitić Ćulafić, Dragana
AU  - Boccacccini, Aldo R.
AU  - Stevanović, Magdalena
PY  - 2023
UR  - https://dais.sanu.ac.rs/123456789/15195
AB  - Recently, many studies have shown various beneficial effects of polyphenol resveratrol (Res) on human health. The most important of these effects include cardioprotective, neuroprotective, anti-cancer, anti-inflammatory, osteoinductive, and anti-microbial effects. Resveratrol has cis and trans isoforms, with the trans isoform being more stable and biologically active. Despite the results of in vitro experiments, resveratrol has limited potential for application in vivo due to its poor water solubility, sensitivity to oxygen, light, and heat, rapid metabolism, and therefore low bioavailability. The possible solution to overcome these limitations could be the synthesis of resveratrol in nanoparticle form. Accordingly, in this study, we have developed a simple, green solvent/non-solvent physicochemical method to synthesize stable, uniform, carrier-free resveratrol nanobelt-like particles (ResNPs) for applications in tissue engineering. UV–visible spectroscopy (UV-Vis) was used to identify the trans isoform of ResNPs which remained stable for at least 63 days. The additional qualitative analysis was performed by Fourier transform infrared spectroscopy (FTIR), while X-ray diffraction (XRD) determined the monoclinic structure of resveratrol with a significant difference in the intensity of diffraction peaks between commercial and nano-belt form. The morphology of ResNPs was evaluated by optical microscopy and field-emission scanning electron microscope (FE-SEM) that revealed a uniform nanobelt-like structure with an individual thickness of less than 1 μm. Bioactivity was confirmed using Artemia salina in vivo toxicity assay, while 2,2–diphenyl-1-picrylhydrazylhydrate (DPPH) reduction assay showed the good antioxidative potential of concentrations of 100 μg/ml and lower. Microdilution assay on several reference strains and clinical isolates showed promising antibacterial potential on Staphylococci, with minimal inhibitory concentration (MIC) being 800 μg/ml. Bioactive glass-based scaffolds were coated with ResNPs and characterized to confirm coating potential. All of the above make these particles a promising bioactive, easy-to-handle component in various biomaterial formulations.
PB  - SAGE Publications Ltd.
T2  - Journal of Biomaterials Applications
T1  - Synthesis and characterization of innovative resveratrol nanobelt-like particles and assessment of their bioactivity, antioxidative and antibacterial properties
SP  - 122
EP  - 133
VL  - 38
IS  - 1
DO  - 10.1177/08853282231183109
UR  - https://hdl.handle.net/21.15107/rcub_dais_15195
ER  - 
@article{
author = "Tomić, Nina and Matić, Tamara and Filipović, Nenad and Mitić Ćulafić, Dragana and Boccacccini, Aldo R. and Stevanović, Magdalena",
year = "2023",
abstract = "Recently, many studies have shown various beneficial effects of polyphenol resveratrol (Res) on human health. The most important of these effects include cardioprotective, neuroprotective, anti-cancer, anti-inflammatory, osteoinductive, and anti-microbial effects. Resveratrol has cis and trans isoforms, with the trans isoform being more stable and biologically active. Despite the results of in vitro experiments, resveratrol has limited potential for application in vivo due to its poor water solubility, sensitivity to oxygen, light, and heat, rapid metabolism, and therefore low bioavailability. The possible solution to overcome these limitations could be the synthesis of resveratrol in nanoparticle form. Accordingly, in this study, we have developed a simple, green solvent/non-solvent physicochemical method to synthesize stable, uniform, carrier-free resveratrol nanobelt-like particles (ResNPs) for applications in tissue engineering. UV–visible spectroscopy (UV-Vis) was used to identify the trans isoform of ResNPs which remained stable for at least 63 days. The additional qualitative analysis was performed by Fourier transform infrared spectroscopy (FTIR), while X-ray diffraction (XRD) determined the monoclinic structure of resveratrol with a significant difference in the intensity of diffraction peaks between commercial and nano-belt form. The morphology of ResNPs was evaluated by optical microscopy and field-emission scanning electron microscope (FE-SEM) that revealed a uniform nanobelt-like structure with an individual thickness of less than 1 μm. Bioactivity was confirmed using Artemia salina in vivo toxicity assay, while 2,2–diphenyl-1-picrylhydrazylhydrate (DPPH) reduction assay showed the good antioxidative potential of concentrations of 100 μg/ml and lower. Microdilution assay on several reference strains and clinical isolates showed promising antibacterial potential on Staphylococci, with minimal inhibitory concentration (MIC) being 800 μg/ml. Bioactive glass-based scaffolds were coated with ResNPs and characterized to confirm coating potential. All of the above make these particles a promising bioactive, easy-to-handle component in various biomaterial formulations.",
publisher = "SAGE Publications Ltd.",
journal = "Journal of Biomaterials Applications",
title = "Synthesis and characterization of innovative resveratrol nanobelt-like particles and assessment of their bioactivity, antioxidative and antibacterial properties",
pages = "122-133",
volume = "38",
number = "1",
doi = "10.1177/08853282231183109",
url = "https://hdl.handle.net/21.15107/rcub_dais_15195"
}
Tomić, N., Matić, T., Filipović, N., Mitić Ćulafić, D., Boccacccini, A. R.,& Stevanović, M.. (2023). Synthesis and characterization of innovative resveratrol nanobelt-like particles and assessment of their bioactivity, antioxidative and antibacterial properties. in Journal of Biomaterials Applications
SAGE Publications Ltd.., 38(1), 122-133.
https://doi.org/10.1177/08853282231183109
https://hdl.handle.net/21.15107/rcub_dais_15195
Tomić N, Matić T, Filipović N, Mitić Ćulafić D, Boccacccini AR, Stevanović M. Synthesis and characterization of innovative resveratrol nanobelt-like particles and assessment of their bioactivity, antioxidative and antibacterial properties. in Journal of Biomaterials Applications. 2023;38(1):122-133.
doi:10.1177/08853282231183109
https://hdl.handle.net/21.15107/rcub_dais_15195 .
Tomić, Nina, Matić, Tamara, Filipović, Nenad, Mitić Ćulafić, Dragana, Boccacccini, Aldo R., Stevanović, Magdalena, "Synthesis and characterization of innovative resveratrol nanobelt-like particles and assessment of their bioactivity, antioxidative and antibacterial properties" in Journal of Biomaterials Applications, 38, no. 1 (2023):122-133,
https://doi.org/10.1177/08853282231183109 .,
https://hdl.handle.net/21.15107/rcub_dais_15195 .
1

Activity of resveratrol nanobelt-like particles against Pseudomonas aeruginosa biofilms

Tomić, Nina; Filipović, Nenad; Mitić Ćulafić, Dragana; Ganić, Tea; Klyagin, Sergey; Osmolovskiy, Alexander; Stevanović, Magdalena

(Belgrade : Institute of Technical Sciences of SASA, 2023)

TY  - CONF
AU  - Tomić, Nina
AU  - Filipović, Nenad
AU  - Mitić Ćulafić, Dragana
AU  - Ganić, Tea
AU  - Klyagin, Sergey
AU  - Osmolovskiy, Alexander
AU  - Stevanović, Magdalena
PY  - 2023
UR  - https://dais.sanu.ac.rs/123456789/15635
AB  - Biomaterial implant contaminations are the most common nosocomial infections. Especially complicated to treat are the ones caused by microbial biofilms. Biofilms are structures comprised of surface-attached cells protected by self-produced polymeric matrix, and are present in more than 80% of persistent infections. Pseudomonas aeruginosa biofilms are exceptionally difficult to resolve, due to high capability of this bacteria for producing biofilm and acquiring antibiotic resistance. In order to prevent biofilm formation and reduce the unnecessary use of antibiotics, various nanomaterials and natural antibiofilm agents are being given more attention in tissue engineering in the last decade. Bioactive polyphenolic compounds have potential for use in biomaterials as multifunctional additives. Among polyphenols, resveratrol is one of the most known, but its’ use is limited by low bioavailability and difficulty of delivery. In our previous research, we created resveratrol nanobelt-like particles of shape convenient for handling and scaffold coating. Here we investigated their potential for inhibiting growth and biofilm formation of several strains of Pseudomonas aeruginosa. Microdilution assay and resazurin staining, as well as agar plating were used to estimate minimal inhibitory and minimal bactericidal concentration. MTT method was performed to more accurately measure the influence of various concentrations on bacterial growth. Crystal violet assay and RT PCR analysis determined the amount of biofilm formation and effect on gene expression. The effect varied among the strains, but most of the tested concentrations, including the lowest ones, led to at least 40% of inhibition of biofilm formation. Concentration of 800 μg/ml achieved almost 90% inhibition of biofilm formation in ATCC reference strain, indicating potential of this material for further use for such purpose in biomaterial design.
PB  - Belgrade : Institute of Technical Sciences of SASA
C3  - Program and the Book of abstracts / Twenty-first Young Researchers' Conference Materials Science and Engineering, November 29 – December 1, 2023, Belgrade, Serbia
T1  - Activity of resveratrol nanobelt-like particles against Pseudomonas aeruginosa biofilms
SP  - 8
EP  - 8
UR  - https://hdl.handle.net/21.15107/rcub_dais_15635
ER  - 
@conference{
author = "Tomić, Nina and Filipović, Nenad and Mitić Ćulafić, Dragana and Ganić, Tea and Klyagin, Sergey and Osmolovskiy, Alexander and Stevanović, Magdalena",
year = "2023",
abstract = "Biomaterial implant contaminations are the most common nosocomial infections. Especially complicated to treat are the ones caused by microbial biofilms. Biofilms are structures comprised of surface-attached cells protected by self-produced polymeric matrix, and are present in more than 80% of persistent infections. Pseudomonas aeruginosa biofilms are exceptionally difficult to resolve, due to high capability of this bacteria for producing biofilm and acquiring antibiotic resistance. In order to prevent biofilm formation and reduce the unnecessary use of antibiotics, various nanomaterials and natural antibiofilm agents are being given more attention in tissue engineering in the last decade. Bioactive polyphenolic compounds have potential for use in biomaterials as multifunctional additives. Among polyphenols, resveratrol is one of the most known, but its’ use is limited by low bioavailability and difficulty of delivery. In our previous research, we created resveratrol nanobelt-like particles of shape convenient for handling and scaffold coating. Here we investigated their potential for inhibiting growth and biofilm formation of several strains of Pseudomonas aeruginosa. Microdilution assay and resazurin staining, as well as agar plating were used to estimate minimal inhibitory and minimal bactericidal concentration. MTT method was performed to more accurately measure the influence of various concentrations on bacterial growth. Crystal violet assay and RT PCR analysis determined the amount of biofilm formation and effect on gene expression. The effect varied among the strains, but most of the tested concentrations, including the lowest ones, led to at least 40% of inhibition of biofilm formation. Concentration of 800 μg/ml achieved almost 90% inhibition of biofilm formation in ATCC reference strain, indicating potential of this material for further use for such purpose in biomaterial design.",
publisher = "Belgrade : Institute of Technical Sciences of SASA",
journal = "Program and the Book of abstracts / Twenty-first Young Researchers' Conference Materials Science and Engineering, November 29 – December 1, 2023, Belgrade, Serbia",
title = "Activity of resveratrol nanobelt-like particles against Pseudomonas aeruginosa biofilms",
pages = "8-8",
url = "https://hdl.handle.net/21.15107/rcub_dais_15635"
}
Tomić, N., Filipović, N., Mitić Ćulafić, D., Ganić, T., Klyagin, S., Osmolovskiy, A.,& Stevanović, M.. (2023). Activity of resveratrol nanobelt-like particles against Pseudomonas aeruginosa biofilms. in Program and the Book of abstracts / Twenty-first Young Researchers' Conference Materials Science and Engineering, November 29 – December 1, 2023, Belgrade, Serbia
Belgrade : Institute of Technical Sciences of SASA., 8-8.
https://hdl.handle.net/21.15107/rcub_dais_15635
Tomić N, Filipović N, Mitić Ćulafić D, Ganić T, Klyagin S, Osmolovskiy A, Stevanović M. Activity of resveratrol nanobelt-like particles against Pseudomonas aeruginosa biofilms. in Program and the Book of abstracts / Twenty-first Young Researchers' Conference Materials Science and Engineering, November 29 – December 1, 2023, Belgrade, Serbia. 2023;:8-8.
https://hdl.handle.net/21.15107/rcub_dais_15635 .
Tomić, Nina, Filipović, Nenad, Mitić Ćulafić, Dragana, Ganić, Tea, Klyagin, Sergey, Osmolovskiy, Alexander, Stevanović, Magdalena, "Activity of resveratrol nanobelt-like particles against Pseudomonas aeruginosa biofilms" in Program and the Book of abstracts / Twenty-first Young Researchers' Conference Materials Science and Engineering, November 29 – December 1, 2023, Belgrade, Serbia (2023):8-8,
https://hdl.handle.net/21.15107/rcub_dais_15635 .

Electrochemical characteristics of V2O5/rGO synthesized by sol-gel method in water electrolyte

Kuzmanović, Maja; Guberinić, Katarina; Kraljić Rokvić, Marijana; Stojković Simatović, Ivana

(Belgrade : Serbian Ceramic Society, 2023)

TY  - CONF
AU  - Kuzmanović, Maja
AU  - Guberinić, Katarina
AU  - Kraljić Rokvić, Marijana
AU  - Stojković Simatović, Ivana
PY  - 2023
UR  - https://dais.sanu.ac.rs/123456789/15153
AB  - Today, rechargeable Li- ion batteries have widespread use as power sources. However, the organic electrolytes used in these batteries are toxic, so the use of aqueous electrolytes is preferred. Vanadium pentoxide has been intensively studied as a cathode material for use in batteries with aqueous electrolytes. In this work, the V2O5 composite with reduced graphene oxide was synthesized by a simple sol-gel synthesis. Material was characterized by XRD, thermal analysis and optical microscope. The electrochemical properties of the composite material were examined by the method of cyclic voltammetry at different polarization speeds. Aqueous electrolytes LiNO3, NaNO3 and Mg (NO3)2 were used. These characteristics were correlated to determine for which type of batteries the tested composite can be used, as well as how reduced graphene oxide affects the stability and capacity value of V2O5.
PB  - Belgrade : Serbian Ceramic Society
C3  - Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application XI New Frontiers in Multifunctional Material Science and Processing, Serbian Academy of Sciences and Art Serbia, Belgrade,18-20.September 2023
T1  - Electrochemical characteristics of V2O5/rGO synthesized by sol-gel method in water electrolyte
SP  - 85
EP  - 86
UR  - https://hdl.handle.net/21.15107/rcub_dais_15153
ER  - 
@conference{
author = "Kuzmanović, Maja and Guberinić, Katarina and Kraljić Rokvić, Marijana and Stojković Simatović, Ivana",
year = "2023",
abstract = "Today, rechargeable Li- ion batteries have widespread use as power sources. However, the organic electrolytes used in these batteries are toxic, so the use of aqueous electrolytes is preferred. Vanadium pentoxide has been intensively studied as a cathode material for use in batteries with aqueous electrolytes. In this work, the V2O5 composite with reduced graphene oxide was synthesized by a simple sol-gel synthesis. Material was characterized by XRD, thermal analysis and optical microscope. The electrochemical properties of the composite material were examined by the method of cyclic voltammetry at different polarization speeds. Aqueous electrolytes LiNO3, NaNO3 and Mg (NO3)2 were used. These characteristics were correlated to determine for which type of batteries the tested composite can be used, as well as how reduced graphene oxide affects the stability and capacity value of V2O5.",
publisher = "Belgrade : Serbian Ceramic Society",
journal = "Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application XI New Frontiers in Multifunctional Material Science and Processing, Serbian Academy of Sciences and Art Serbia, Belgrade,18-20.September 2023",
title = "Electrochemical characteristics of V2O5/rGO synthesized by sol-gel method in water electrolyte",
pages = "85-86",
url = "https://hdl.handle.net/21.15107/rcub_dais_15153"
}
Kuzmanović, M., Guberinić, K., Kraljić Rokvić, M.,& Stojković Simatović, I.. (2023). Electrochemical characteristics of V2O5/rGO synthesized by sol-gel method in water electrolyte. in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application XI New Frontiers in Multifunctional Material Science and Processing, Serbian Academy of Sciences and Art Serbia, Belgrade,18-20.September 2023
Belgrade : Serbian Ceramic Society., 85-86.
https://hdl.handle.net/21.15107/rcub_dais_15153
Kuzmanović M, Guberinić K, Kraljić Rokvić M, Stojković Simatović I. Electrochemical characteristics of V2O5/rGO synthesized by sol-gel method in water electrolyte. in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application XI New Frontiers in Multifunctional Material Science and Processing, Serbian Academy of Sciences and Art Serbia, Belgrade,18-20.September 2023. 2023;:85-86.
https://hdl.handle.net/21.15107/rcub_dais_15153 .
Kuzmanović, Maja, Guberinić, Katarina, Kraljić Rokvić, Marijana, Stojković Simatović, Ivana, "Electrochemical characteristics of V2O5/rGO synthesized by sol-gel method in water electrolyte" in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application XI New Frontiers in Multifunctional Material Science and Processing, Serbian Academy of Sciences and Art Serbia, Belgrade,18-20.September 2023 (2023):85-86,
https://hdl.handle.net/21.15107/rcub_dais_15153 .

Morphological and Structural Characterization of MgAl2O4 Spinel

Obradović, Nina; Filipović, Suzana; Fahrenholtz, William G.; Marinković, Bojan A.; Rogan, Jelena; Lević, Steva; Đorđević, Antonije; Pavlović, Vladimir B.

(ETRAN, 2023)

TY  - JOUR
AU  - Obradović, Nina
AU  - Filipović, Suzana
AU  - Fahrenholtz, William G.
AU  - Marinković, Bojan A.
AU  - Rogan, Jelena
AU  - Lević, Steva
AU  - Đorđević, Antonije
AU  - Pavlović, Vladimir B.
PY  - 2023
UR  - https://dais.sanu.ac.rs/123456789/14704
AB  - Magnesium aluminate has the spinel structure along with good mechanical, chemical, and thermal properties. Magnesium aluminate has a wide range of applications including refractory ceramics, optically transparent ceramic windows, and armors. Its low dielectric permeability and low loss tangent enable its applications for integrated electronic devices, as well. In this paper, MgO and Al2O3 powders were mixed in a one-to-one molar ratio and calcined at temperatures ranging from 1500 to 1800°C to produce phase pure spinel. Thereafter, pellets were crushed and treated in a planetary ball mill for 60 min to obtain a fine powder. All powders were examined for phase composition, crystal structure, and morphology. The obtained results showed that by increasing the temperature, samples with higher density were synthesized. Milling for 1 h led to formation of larger particles, but finer powders after milling. XRPD and Raman spectroscopy showed disorder in the crystal structure after milling.
AB  - Магнезијум алуминат поседује структуру спинела и добра механичка, хемијска и термичка својства. Има широк спектар примене, укључујући рефракторну керамику, оружје и оптички транспарентна керамичка стакла. Ниска диелектрична пермеабилност и тангенс губитака пружају овој керамици примену и у електричним направама. У овом раду, прахови MgO и Al2O3 су помешани у моларном односу 1:1 и калцинисани на температурама између 1500°C и 1800°C да би се добио спинел. Након тога, узорци су смрвљени и механички активирани у млину током 60 минута да би се добио фини уситњен прах. Одређени су фазни састав, кристална структура и морфологија свих прахова. Резултати су показали да са порастом температуре расте и густина синтетисаних узорака. Млевење од 1 сата води ка формирању већих честица, али финијих прахова након млевења. XRPD и Раман спектроскопија указују на неуређену кристалну структуру након млевења.
PB  - ETRAN
T2  - Science of Sintering
T1  - Morphological and Structural Characterization of MgAl2O4 Spinel
SP  - 1
EP  - 10
VL  - 55
IS  - 1
DO  - 10.2298/SOS2301001O
UR  - https://hdl.handle.net/21.15107/rcub_dais_14704
ER  - 
@article{
author = "Obradović, Nina and Filipović, Suzana and Fahrenholtz, William G. and Marinković, Bojan A. and Rogan, Jelena and Lević, Steva and Đorđević, Antonije and Pavlović, Vladimir B.",
year = "2023",
abstract = "Magnesium aluminate has the spinel structure along with good mechanical, chemical, and thermal properties. Magnesium aluminate has a wide range of applications including refractory ceramics, optically transparent ceramic windows, and armors. Its low dielectric permeability and low loss tangent enable its applications for integrated electronic devices, as well. In this paper, MgO and Al2O3 powders were mixed in a one-to-one molar ratio and calcined at temperatures ranging from 1500 to 1800°C to produce phase pure spinel. Thereafter, pellets were crushed and treated in a planetary ball mill for 60 min to obtain a fine powder. All powders were examined for phase composition, crystal structure, and morphology. The obtained results showed that by increasing the temperature, samples with higher density were synthesized. Milling for 1 h led to formation of larger particles, but finer powders after milling. XRPD and Raman spectroscopy showed disorder in the crystal structure after milling., Магнезијум алуминат поседује структуру спинела и добра механичка, хемијска и термичка својства. Има широк спектар примене, укључујући рефракторну керамику, оружје и оптички транспарентна керамичка стакла. Ниска диелектрична пермеабилност и тангенс губитака пружају овој керамици примену и у електричним направама. У овом раду, прахови MgO и Al2O3 су помешани у моларном односу 1:1 и калцинисани на температурама између 1500°C и 1800°C да би се добио спинел. Након тога, узорци су смрвљени и механички активирани у млину током 60 минута да би се добио фини уситњен прах. Одређени су фазни састав, кристална структура и морфологија свих прахова. Резултати су показали да са порастом температуре расте и густина синтетисаних узорака. Млевење од 1 сата води ка формирању већих честица, али финијих прахова након млевења. XRPD и Раман спектроскопија указују на неуређену кристалну структуру након млевења.",
publisher = "ETRAN",
journal = "Science of Sintering",
title = "Morphological and Structural Characterization of MgAl2O4 Spinel",
pages = "1-10",
volume = "55",
number = "1",
doi = "10.2298/SOS2301001O",
url = "https://hdl.handle.net/21.15107/rcub_dais_14704"
}
Obradović, N., Filipović, S., Fahrenholtz, W. G., Marinković, B. A., Rogan, J., Lević, S., Đorđević, A.,& Pavlović, V. B.. (2023). Morphological and Structural Characterization of MgAl2O4 Spinel. in Science of Sintering
ETRAN., 55(1), 1-10.
https://doi.org/10.2298/SOS2301001O
https://hdl.handle.net/21.15107/rcub_dais_14704
Obradović N, Filipović S, Fahrenholtz WG, Marinković BA, Rogan J, Lević S, Đorđević A, Pavlović VB. Morphological and Structural Characterization of MgAl2O4 Spinel. in Science of Sintering. 2023;55(1):1-10.
doi:10.2298/SOS2301001O
https://hdl.handle.net/21.15107/rcub_dais_14704 .
Obradović, Nina, Filipović, Suzana, Fahrenholtz, William G., Marinković, Bojan A., Rogan, Jelena, Lević, Steva, Đorđević, Antonije, Pavlović, Vladimir B., "Morphological and Structural Characterization of MgAl2O4 Spinel" in Science of Sintering, 55, no. 1 (2023):1-10,
https://doi.org/10.2298/SOS2301001O .,
https://hdl.handle.net/21.15107/rcub_dais_14704 .

Advanced photocatalysis mediated by TiO2/Ag/TiO2 nanoparticles modified cotton fabric

Milošević, Milica V.; Radoičić, Marija; Ohara, Satoshi; Abe, Hiroya; Spasojević, Jelena; Mančić, Lidija; Šaponjić, Zoran

(Springer Science and Business Media LLC, 2023)

TY  - JOUR
AU  - Milošević, Milica V.
AU  - Radoičić, Marija
AU  - Ohara, Satoshi
AU  - Abe, Hiroya
AU  - Spasojević, Jelena
AU  - Mančić, Lidija
AU  - Šaponjić, Zoran
PY  - 2023
UR  - https://dais.sanu.ac.rs/123456789/14316
AB  - Novel cotton-based TiO2/Ag/TiO2 nanocomposites for wastewater treatment were developed by fine chemical synthesis path with the goal of coping with wastewater issues and environmental remediation. The photocatalytic performances of nanocomposites were tested during photodegradation processes of RB, AO7 and MR under simulated solar light. Double- and single-loaded nanocomposites were synthesized by a simple bottom-up approach implying in situ photoreduction of Ag+ ions on the surface of TiO2 NPs previously deposited on cotton fibers from colloids. The spherical-like colloidal TiO2 NPs (4.5 nm) and TiO2/Ag NPs (8 nm) and the formation of uniform TiO2/Ag and TiO2/Ag/TiO2 nano-coatings on cotton fibers were examined by TEM and FESEM. The reduction of Ag+ ions on TiO2 surface was undoubtedly proven by the appearance of SPR band of Ag NPs in UV/Vis spectra. Raman spectroscopy clearly confirmed the presence of anatase TiO2 in nanocomposites. Quantitative determination of TiO2 and Ag in nanocomposites was accomplished using EDX and ICP–OES. The cotton-based TiO2/Ag/TiO2 nanocomposite showed the highest photocatalytic efficiency (> 90%) and maintained its removal efficiency after three reuse cycles, indicated its exceptional photochemical ability. The initial idea of improved photocatalytic performances of a TiO2 NPs double-layer with immobilized Ag NPs was justified as the TiO2/Ag/TiO2 processed sample contributed additional binding sites for dye molecules. Considering that the photocatalytic activity of the cotton-based TiO2 and TiO2/Ag samples was practically imperceptible, it can be assumed that the synthesized Ag NPs act predominantly as electron traps in the double-loaded synthesized system.
PB  - Springer Science and Business Media LLC
T2  - Cellulose
T1  - Advanced photocatalysis mediated by TiO2/Ag/TiO2 nanoparticles modified cotton fabric
DO  - 10.1007/s10570-023-05165-0
UR  - https://hdl.handle.net/21.15107/rcub_dais_14316
ER  - 
@article{
author = "Milošević, Milica V. and Radoičić, Marija and Ohara, Satoshi and Abe, Hiroya and Spasojević, Jelena and Mančić, Lidija and Šaponjić, Zoran",
year = "2023",
abstract = "Novel cotton-based TiO2/Ag/TiO2 nanocomposites for wastewater treatment were developed by fine chemical synthesis path with the goal of coping with wastewater issues and environmental remediation. The photocatalytic performances of nanocomposites were tested during photodegradation processes of RB, AO7 and MR under simulated solar light. Double- and single-loaded nanocomposites were synthesized by a simple bottom-up approach implying in situ photoreduction of Ag+ ions on the surface of TiO2 NPs previously deposited on cotton fibers from colloids. The spherical-like colloidal TiO2 NPs (4.5 nm) and TiO2/Ag NPs (8 nm) and the formation of uniform TiO2/Ag and TiO2/Ag/TiO2 nano-coatings on cotton fibers were examined by TEM and FESEM. The reduction of Ag+ ions on TiO2 surface was undoubtedly proven by the appearance of SPR band of Ag NPs in UV/Vis spectra. Raman spectroscopy clearly confirmed the presence of anatase TiO2 in nanocomposites. Quantitative determination of TiO2 and Ag in nanocomposites was accomplished using EDX and ICP–OES. The cotton-based TiO2/Ag/TiO2 nanocomposite showed the highest photocatalytic efficiency (> 90%) and maintained its removal efficiency after three reuse cycles, indicated its exceptional photochemical ability. The initial idea of improved photocatalytic performances of a TiO2 NPs double-layer with immobilized Ag NPs was justified as the TiO2/Ag/TiO2 processed sample contributed additional binding sites for dye molecules. Considering that the photocatalytic activity of the cotton-based TiO2 and TiO2/Ag samples was practically imperceptible, it can be assumed that the synthesized Ag NPs act predominantly as electron traps in the double-loaded synthesized system.",
publisher = "Springer Science and Business Media LLC",
journal = "Cellulose",
title = "Advanced photocatalysis mediated by TiO2/Ag/TiO2 nanoparticles modified cotton fabric",
doi = "10.1007/s10570-023-05165-0",
url = "https://hdl.handle.net/21.15107/rcub_dais_14316"
}
Milošević, M. V., Radoičić, M., Ohara, S., Abe, H., Spasojević, J., Mančić, L.,& Šaponjić, Z.. (2023). Advanced photocatalysis mediated by TiO2/Ag/TiO2 nanoparticles modified cotton fabric. in Cellulose
Springer Science and Business Media LLC..
https://doi.org/10.1007/s10570-023-05165-0
https://hdl.handle.net/21.15107/rcub_dais_14316
Milošević MV, Radoičić M, Ohara S, Abe H, Spasojević J, Mančić L, Šaponjić Z. Advanced photocatalysis mediated by TiO2/Ag/TiO2 nanoparticles modified cotton fabric. in Cellulose. 2023;.
doi:10.1007/s10570-023-05165-0
https://hdl.handle.net/21.15107/rcub_dais_14316 .
Milošević, Milica V., Radoičić, Marija, Ohara, Satoshi, Abe, Hiroya, Spasojević, Jelena, Mančić, Lidija, Šaponjić, Zoran, "Advanced photocatalysis mediated by TiO2/Ag/TiO2 nanoparticles modified cotton fabric" in Cellulose (2023),
https://doi.org/10.1007/s10570-023-05165-0 .,
https://hdl.handle.net/21.15107/rcub_dais_14316 .

Ammonia borane assisted mechanochemical boost of electrochemical performance of basal planes of MoS2-type materials

Biliškov, Nikola; Milanović, Igor; Milović, Miloš; Takats, Viktor; Erdelyi, Zoltan

(2023)

TY  - JOUR
AU  - Biliškov, Nikola
AU  - Milanović, Igor
AU  - Milović, Miloš
AU  - Takats, Viktor
AU  - Erdelyi, Zoltan
PY  - 2023
UR  - https://dais.sanu.ac.rs/123456789/14288
AB  - The maximization of the number of exposed edges of layered MoS2-type transition metal dichalcogenides of general formula MX2 (M = Mo, W; X = S, Se) is difficult yet meaningful way to improve their electrochemical and electrocatalytic performance. In this work, an all-solid ball milling method for simultaneous introduction of defects and their hybridization through binding of ammonia borane (NH3BH3) to defect sites of MX2 is demonstrated. The milling conditions leads to partial separation and nanosizing of MX2 layers, simultaneously extensively introducing defects (cracks, vacancies, strains, voids etc.), while the detailed analysis revealed the functionalization of the material by binding of NH3BH3 to defect sites, which results in highly improved electrocatalytic performance of thus obtained composites with respect to MX2 for hydrogen evolution reaction. The mechanochemical approach thus enables preparation of MoS2-type materials with improved, highly tunable activity, potentially relevant for energy conversion and storage.
T2  - Journal of Alloys and Compounds
T1  - Ammonia borane assisted mechanochemical boost of electrochemical performance of basal planes of MoS2-type materials
SP  - 169293
VL  - 945
DO  - 10.1016/j.jallcom.2023.169293
UR  - https://hdl.handle.net/21.15107/rcub_dais_14288
ER  - 
@article{
author = "Biliškov, Nikola and Milanović, Igor and Milović, Miloš and Takats, Viktor and Erdelyi, Zoltan",
year = "2023",
abstract = "The maximization of the number of exposed edges of layered MoS2-type transition metal dichalcogenides of general formula MX2 (M = Mo, W; X = S, Se) is difficult yet meaningful way to improve their electrochemical and electrocatalytic performance. In this work, an all-solid ball milling method for simultaneous introduction of defects and their hybridization through binding of ammonia borane (NH3BH3) to defect sites of MX2 is demonstrated. The milling conditions leads to partial separation and nanosizing of MX2 layers, simultaneously extensively introducing defects (cracks, vacancies, strains, voids etc.), while the detailed analysis revealed the functionalization of the material by binding of NH3BH3 to defect sites, which results in highly improved electrocatalytic performance of thus obtained composites with respect to MX2 for hydrogen evolution reaction. The mechanochemical approach thus enables preparation of MoS2-type materials with improved, highly tunable activity, potentially relevant for energy conversion and storage.",
journal = "Journal of Alloys and Compounds",
title = "Ammonia borane assisted mechanochemical boost of electrochemical performance of basal planes of MoS2-type materials",
pages = "169293",
volume = "945",
doi = "10.1016/j.jallcom.2023.169293",
url = "https://hdl.handle.net/21.15107/rcub_dais_14288"
}
Biliškov, N., Milanović, I., Milović, M., Takats, V.,& Erdelyi, Z.. (2023). Ammonia borane assisted mechanochemical boost of electrochemical performance of basal planes of MoS2-type materials. in Journal of Alloys and Compounds, 945, 169293.
https://doi.org/10.1016/j.jallcom.2023.169293
https://hdl.handle.net/21.15107/rcub_dais_14288
Biliškov N, Milanović I, Milović M, Takats V, Erdelyi Z. Ammonia borane assisted mechanochemical boost of electrochemical performance of basal planes of MoS2-type materials. in Journal of Alloys and Compounds. 2023;945:169293.
doi:10.1016/j.jallcom.2023.169293
https://hdl.handle.net/21.15107/rcub_dais_14288 .
Biliškov, Nikola, Milanović, Igor, Milović, Miloš, Takats, Viktor, Erdelyi, Zoltan, "Ammonia borane assisted mechanochemical boost of electrochemical performance of basal planes of MoS2-type materials" in Journal of Alloys and Compounds, 945 (2023):169293,
https://doi.org/10.1016/j.jallcom.2023.169293 .,
https://hdl.handle.net/21.15107/rcub_dais_14288 .

Antimicrobial and Osteogenic Effects of Collagen Membrane Decorated with Chitosan–Nano-Hydroxyapatite

Lazarević, Miloš; Petrović, Sanja; Pierfelice, Tania Vanessa; Ignjatović, Nenad; Piattelli, Adriano; Vlajić Tovilović, Tamara; Radunović, Milena

(Basel : MDPI AG, 2023)

TY  - JOUR
AU  - Lazarević, Miloš
AU  - Petrović, Sanja
AU  - Pierfelice, Tania Vanessa
AU  - Ignjatović, Nenad
AU  - Piattelli, Adriano
AU  - Vlajić Tovilović, Tamara
AU  - Radunović, Milena
PY  - 2023
UR  - https://dais.sanu.ac.rs/123456789/14287
AB  - Collagen membranes are routinely used in oral surgery for bone regeneration. Despite their numerous advantages, such as stimulating bone growth, bacterial contamination still remains one of the disadvantages of membrane use. Thus, we assessed the biocompatibility and osteogenic and antibacterial properties of a collagen membrane (OsteoBiol) modified with chitosan (CHI) and hydroxyapatite nanoparticles (HApNPs). Attenuated total reflectance-Fourier transform infrared spectroscopy (ATR FT-IR), X-ray powder diffraction (XRD), and field emission scanning electron microscopy (FE-SEM) were performed for membrane characterization. Biocompatibility was assessed on dental pulp stem cells (DPSCs) by an MTT assay, while the osteogenic effect was assessed by an ALP activity assay and qPCR analysis of osteogenic markers (BMP4, ALP, RUNX2, and OCN). Antimicrobial properties were investigated by counting colony-forming units (CFUs) of Streptococcus mitis, Porphyromonas gingivalis, and Fusobaterium nucleatum on membranes and in the surrounding medium. Membranes showed no cytotoxicity. ALP activity was higher and ALP, BMP4, and OCN genes were up-regulated in DPSCs on modified membranes compared to unmodified membranes. The CFUs were reduced on modified membranes and in the medium. Modified membranes showed great biocompatibility and a high osteoinductive effect. Additionally, they showed antimicrobial and antibiofilm effects against periopathogens. It can be concluded that the incorporation of CHI and hydroxyapatite nanoparticles in collagen membranes may be advantageous to promote osteogenesis and reduce bacterial adhesion.
PB  - Basel : MDPI AG
T2  - Biomolecules
T1  - Antimicrobial and Osteogenic Effects of Collagen Membrane Decorated with Chitosan–Nano-Hydroxyapatite
SP  - 579
VL  - 13
IS  - 4
DO  - 10.3390/biom13040579
UR  - https://hdl.handle.net/21.15107/rcub_dais_14287
ER  - 
@article{
author = "Lazarević, Miloš and Petrović, Sanja and Pierfelice, Tania Vanessa and Ignjatović, Nenad and Piattelli, Adriano and Vlajić Tovilović, Tamara and Radunović, Milena",
year = "2023",
abstract = "Collagen membranes are routinely used in oral surgery for bone regeneration. Despite their numerous advantages, such as stimulating bone growth, bacterial contamination still remains one of the disadvantages of membrane use. Thus, we assessed the biocompatibility and osteogenic and antibacterial properties of a collagen membrane (OsteoBiol) modified with chitosan (CHI) and hydroxyapatite nanoparticles (HApNPs). Attenuated total reflectance-Fourier transform infrared spectroscopy (ATR FT-IR), X-ray powder diffraction (XRD), and field emission scanning electron microscopy (FE-SEM) were performed for membrane characterization. Biocompatibility was assessed on dental pulp stem cells (DPSCs) by an MTT assay, while the osteogenic effect was assessed by an ALP activity assay and qPCR analysis of osteogenic markers (BMP4, ALP, RUNX2, and OCN). Antimicrobial properties were investigated by counting colony-forming units (CFUs) of Streptococcus mitis, Porphyromonas gingivalis, and Fusobaterium nucleatum on membranes and in the surrounding medium. Membranes showed no cytotoxicity. ALP activity was higher and ALP, BMP4, and OCN genes were up-regulated in DPSCs on modified membranes compared to unmodified membranes. The CFUs were reduced on modified membranes and in the medium. Modified membranes showed great biocompatibility and a high osteoinductive effect. Additionally, they showed antimicrobial and antibiofilm effects against periopathogens. It can be concluded that the incorporation of CHI and hydroxyapatite nanoparticles in collagen membranes may be advantageous to promote osteogenesis and reduce bacterial adhesion.",
publisher = "Basel : MDPI AG",
journal = "Biomolecules",
title = "Antimicrobial and Osteogenic Effects of Collagen Membrane Decorated with Chitosan–Nano-Hydroxyapatite",
pages = "579",
volume = "13",
number = "4",
doi = "10.3390/biom13040579",
url = "https://hdl.handle.net/21.15107/rcub_dais_14287"
}
Lazarević, M., Petrović, S., Pierfelice, T. V., Ignjatović, N., Piattelli, A., Vlajić Tovilović, T.,& Radunović, M.. (2023). Antimicrobial and Osteogenic Effects of Collagen Membrane Decorated with Chitosan–Nano-Hydroxyapatite. in Biomolecules
Basel : MDPI AG., 13(4), 579.
https://doi.org/10.3390/biom13040579
https://hdl.handle.net/21.15107/rcub_dais_14287
Lazarević M, Petrović S, Pierfelice TV, Ignjatović N, Piattelli A, Vlajić Tovilović T, Radunović M. Antimicrobial and Osteogenic Effects of Collagen Membrane Decorated with Chitosan–Nano-Hydroxyapatite. in Biomolecules. 2023;13(4):579.
doi:10.3390/biom13040579
https://hdl.handle.net/21.15107/rcub_dais_14287 .
Lazarević, Miloš, Petrović, Sanja, Pierfelice, Tania Vanessa, Ignjatović, Nenad, Piattelli, Adriano, Vlajić Tovilović, Tamara, Radunović, Milena, "Antimicrobial and Osteogenic Effects of Collagen Membrane Decorated with Chitosan–Nano-Hydroxyapatite" in Biomolecules, 13, no. 4 (2023):579,
https://doi.org/10.3390/biom13040579 .,
https://hdl.handle.net/21.15107/rcub_dais_14287 .

Polymer‐lipid matrice based on carboxymethyl cellulose/solagum and liposomes for controlled release of folic acid

Batinić, Petar M.; Đorđević, Verica; Obradović, Nataša S.; Krstić, Aleksandar D.; Stevanović, Sanja; Balanč, Bojana; Marković, Smilja; Pjanović, Rada; Mijin, Dušan; Bugarski, Branko

(Wiley, 2023)

TY  - JOUR
AU  - Batinić, Petar M.
AU  - Đorđević, Verica
AU  - Obradović, Nataša S.
AU  - Krstić, Aleksandar D.
AU  - Stevanović, Sanja
AU  - Balanč, Bojana
AU  - Marković, Smilja
AU  - Pjanović, Rada
AU  - Mijin, Dušan
AU  - Bugarski, Branko
PY  - 2023
UR  - https://dais.sanu.ac.rs/123456789/14283
AB  - Liposome-encapsulated folic acid was incorporated into the films made from sodium carboxymethyl cellulose (CMC) (2 mas%) and a mixture of carboxymethyl cellulose and solagum (9:1 w/w) using the film-forming cast solution method. Histidine was used to increase solubility for folic acid in liposomes (1-5 mg/ml), and propylene glycol was used as a film plasticizer (2.6 mas%). The obtained films (50-60 µm tick) containing 3.12-20.19 mg of folic acid per gram of film are envisaged to be used as patches for transdermal delivery of folic acid. Therefore, some physical, mechanical, release and structural attributes of the films were scrutinized. Folic acid gave yellow color to the films and contributed to stronger chemical bonds which resulted in improved strength of the film. Liposomes prolonged the release of folic acid from films to 24 h without adverse effects on mechanical properties of the films, but degraded homogeneity of the films, which could be ascribed to its agglomeration within the film matrix as revealed by AFM. According to the release at pH 5.5, the film formulation based on a blend of CMC and solagum containing 3 mg/ml liposome-encapsulated folic acid is recommended from the point of view of release kinetics determined by its solubility.  Practical application: Folic acid is effective in reducing oxidative stress levels in the skin and neutralizing the harmful free radicals and is also essential for various metabolic reactions in the body. However, the limited solubility of folic acid linked with its poor absorption in an organism, low storage stability, short half-life upon oral consumption, specific food preferences of some people, extensive liver metabolism, and pregnancy-induced vomiting point to a large potential in transdermal usage of folic acid. This has motivated us to design new multicomponent polymer-lipid systems as an alternative solution to overcome some of these drawbacks. The results obtained for these multicomponent films pointed to their potential for prolonged release of folic acid to 24 h, which can also be useful for scientists interested in encapsulating similar poorly soluble compounds in CMC patches. The finding can be also valuable information for pharmaceutical manufacturers and scientists worldwide.
PB  - Wiley
T2  - European Journal of Lipid Science and Technology
T1  - Polymer‐lipid matrice based on carboxymethyl cellulose/solagum and liposomes for controlled release of folic acid
SP  - 2200169
DO  - 10.1002/ejlt.202200169
UR  - https://hdl.handle.net/21.15107/rcub_dais_14283
ER  - 
@article{
author = "Batinić, Petar M. and Đorđević, Verica and Obradović, Nataša S. and Krstić, Aleksandar D. and Stevanović, Sanja and Balanč, Bojana and Marković, Smilja and Pjanović, Rada and Mijin, Dušan and Bugarski, Branko",
year = "2023",
abstract = "Liposome-encapsulated folic acid was incorporated into the films made from sodium carboxymethyl cellulose (CMC) (2 mas%) and a mixture of carboxymethyl cellulose and solagum (9:1 w/w) using the film-forming cast solution method. Histidine was used to increase solubility for folic acid in liposomes (1-5 mg/ml), and propylene glycol was used as a film plasticizer (2.6 mas%). The obtained films (50-60 µm tick) containing 3.12-20.19 mg of folic acid per gram of film are envisaged to be used as patches for transdermal delivery of folic acid. Therefore, some physical, mechanical, release and structural attributes of the films were scrutinized. Folic acid gave yellow color to the films and contributed to stronger chemical bonds which resulted in improved strength of the film. Liposomes prolonged the release of folic acid from films to 24 h without adverse effects on mechanical properties of the films, but degraded homogeneity of the films, which could be ascribed to its agglomeration within the film matrix as revealed by AFM. According to the release at pH 5.5, the film formulation based on a blend of CMC and solagum containing 3 mg/ml liposome-encapsulated folic acid is recommended from the point of view of release kinetics determined by its solubility.  Practical application: Folic acid is effective in reducing oxidative stress levels in the skin and neutralizing the harmful free radicals and is also essential for various metabolic reactions in the body. However, the limited solubility of folic acid linked with its poor absorption in an organism, low storage stability, short half-life upon oral consumption, specific food preferences of some people, extensive liver metabolism, and pregnancy-induced vomiting point to a large potential in transdermal usage of folic acid. This has motivated us to design new multicomponent polymer-lipid systems as an alternative solution to overcome some of these drawbacks. The results obtained for these multicomponent films pointed to their potential for prolonged release of folic acid to 24 h, which can also be useful for scientists interested in encapsulating similar poorly soluble compounds in CMC patches. The finding can be also valuable information for pharmaceutical manufacturers and scientists worldwide.",
publisher = "Wiley",
journal = "European Journal of Lipid Science and Technology",
title = "Polymer‐lipid matrice based on carboxymethyl cellulose/solagum and liposomes for controlled release of folic acid",
pages = "2200169",
doi = "10.1002/ejlt.202200169",
url = "https://hdl.handle.net/21.15107/rcub_dais_14283"
}
Batinić, P. M., Đorđević, V., Obradović, N. S., Krstić, A. D., Stevanović, S., Balanč, B., Marković, S., Pjanović, R., Mijin, D.,& Bugarski, B.. (2023). Polymer‐lipid matrice based on carboxymethyl cellulose/solagum and liposomes for controlled release of folic acid. in European Journal of Lipid Science and Technology
Wiley., 2200169.
https://doi.org/10.1002/ejlt.202200169
https://hdl.handle.net/21.15107/rcub_dais_14283
Batinić PM, Đorđević V, Obradović NS, Krstić AD, Stevanović S, Balanč B, Marković S, Pjanović R, Mijin D, Bugarski B. Polymer‐lipid matrice based on carboxymethyl cellulose/solagum and liposomes for controlled release of folic acid. in European Journal of Lipid Science and Technology. 2023;:2200169.
doi:10.1002/ejlt.202200169
https://hdl.handle.net/21.15107/rcub_dais_14283 .
Batinić, Petar M., Đorđević, Verica, Obradović, Nataša S., Krstić, Aleksandar D., Stevanović, Sanja, Balanč, Bojana, Marković, Smilja, Pjanović, Rada, Mijin, Dušan, Bugarski, Branko, "Polymer‐lipid matrice based on carboxymethyl cellulose/solagum and liposomes for controlled release of folic acid" in European Journal of Lipid Science and Technology (2023):2200169,
https://doi.org/10.1002/ejlt.202200169 .,
https://hdl.handle.net/21.15107/rcub_dais_14283 .

Effect of the Deposition of Vanadium-Oxide on the Photocatalytic Activity of TiO2 Nanotubes and Its Photodiode Performance Interfaced with CH3NH3PbI3 Single Crystal

Vujančević, Jelena; Andričević, Pavao; Đokić, Veljko; Blagojević, Vladimir A.; Pavlović, Vera P.; Ćirković, Jovana; Horváth, Endre; Forró, László; Karoui, Abdennaceur; Pavlović, Vladimir B.; Janaćković, Đorđe

(MDPI, 2023)

TY  - JOUR
AU  - Vujančević, Jelena
AU  - Andričević, Pavao
AU  - Đokić, Veljko
AU  - Blagojević, Vladimir A.
AU  - Pavlović, Vera P.
AU  - Ćirković, Jovana
AU  - Horváth, Endre
AU  - Forró, László
AU  - Karoui, Abdennaceur
AU  - Pavlović, Vladimir B.
AU  - Janaćković, Đorđe
PY  - 2023
UR  - https://dais.sanu.ac.rs/123456789/14229
AB  - In this study, we report the influence of vanadium oxide (VO), as a photosensitive component, on the photoactivity of TiO2 nanotubes (TNTs). A series of TNTs of varying tube diameter were synthesized by the anodization of titanium foils at different voltages, while vanadium oxide was deposited on TNTs by wet chemical deposition. An improvement in the optical properties of nanotubes was observed after the deposition of vanadium oxide. An improvement in the optical properties (redshift in UV-Vis spectra) of TNTs and TNT/VO was noted. The photocatalytic activity was improved with increasing tube diameter, while it was weakened after the deposition of VO. Furthermore, photoactivity was investigated in photodiodes based on TNTs or TNT/VO and single crystals of CH3NH3PbI3. The photoelectric measurement revealed that different TNT diameters did not influence the I-V characteristic of the photodiodes, while the deposition of VO improved the photocurrent for smaller TNTs.
PB  - MDPI
T2  - Catalysts
T1  - Effect of the Deposition of Vanadium-Oxide on the Photocatalytic Activity of TiO2 Nanotubes and Its Photodiode Performance Interfaced with CH3NH3PbI3 Single Crystal
SP  - 352
VL  - 13
IS  - 2
DO  - 10.3390/catal13020352
UR  - https://hdl.handle.net/21.15107/rcub_dais_14229
ER  - 
@article{
author = "Vujančević, Jelena and Andričević, Pavao and Đokić, Veljko and Blagojević, Vladimir A. and Pavlović, Vera P. and Ćirković, Jovana and Horváth, Endre and Forró, László and Karoui, Abdennaceur and Pavlović, Vladimir B. and Janaćković, Đorđe",
year = "2023",
abstract = "In this study, we report the influence of vanadium oxide (VO), as a photosensitive component, on the photoactivity of TiO2 nanotubes (TNTs). A series of TNTs of varying tube diameter were synthesized by the anodization of titanium foils at different voltages, while vanadium oxide was deposited on TNTs by wet chemical deposition. An improvement in the optical properties of nanotubes was observed after the deposition of vanadium oxide. An improvement in the optical properties (redshift in UV-Vis spectra) of TNTs and TNT/VO was noted. The photocatalytic activity was improved with increasing tube diameter, while it was weakened after the deposition of VO. Furthermore, photoactivity was investigated in photodiodes based on TNTs or TNT/VO and single crystals of CH3NH3PbI3. The photoelectric measurement revealed that different TNT diameters did not influence the I-V characteristic of the photodiodes, while the deposition of VO improved the photocurrent for smaller TNTs.",
publisher = "MDPI",
journal = "Catalysts",
title = "Effect of the Deposition of Vanadium-Oxide on the Photocatalytic Activity of TiO2 Nanotubes and Its Photodiode Performance Interfaced with CH3NH3PbI3 Single Crystal",
pages = "352",
volume = "13",
number = "2",
doi = "10.3390/catal13020352",
url = "https://hdl.handle.net/21.15107/rcub_dais_14229"
}
Vujančević, J., Andričević, P., Đokić, V., Blagojević, V. A., Pavlović, V. P., Ćirković, J., Horváth, E., Forró, L., Karoui, A., Pavlović, V. B.,& Janaćković, Đ.. (2023). Effect of the Deposition of Vanadium-Oxide on the Photocatalytic Activity of TiO2 Nanotubes and Its Photodiode Performance Interfaced with CH3NH3PbI3 Single Crystal. in Catalysts
MDPI., 13(2), 352.
https://doi.org/10.3390/catal13020352
https://hdl.handle.net/21.15107/rcub_dais_14229
Vujančević J, Andričević P, Đokić V, Blagojević VA, Pavlović VP, Ćirković J, Horváth E, Forró L, Karoui A, Pavlović VB, Janaćković Đ. Effect of the Deposition of Vanadium-Oxide on the Photocatalytic Activity of TiO2 Nanotubes and Its Photodiode Performance Interfaced with CH3NH3PbI3 Single Crystal. in Catalysts. 2023;13(2):352.
doi:10.3390/catal13020352
https://hdl.handle.net/21.15107/rcub_dais_14229 .
Vujančević, Jelena, Andričević, Pavao, Đokić, Veljko, Blagojević, Vladimir A., Pavlović, Vera P., Ćirković, Jovana, Horváth, Endre, Forró, László, Karoui, Abdennaceur, Pavlović, Vladimir B., Janaćković, Đorđe, "Effect of the Deposition of Vanadium-Oxide on the Photocatalytic Activity of TiO2 Nanotubes and Its Photodiode Performance Interfaced with CH3NH3PbI3 Single Crystal" in Catalysts, 13, no. 2 (2023):352,
https://doi.org/10.3390/catal13020352 .,
https://hdl.handle.net/21.15107/rcub_dais_14229 .

The effect of the refractory material on the phase transformation parameteres during forming of the Al-8wt%Si-3wt%Cu structure

Mitrašinović, Aleksandar; Nešković, Jasmina; Labus, Nebojša; Radosavljević, Milinko

(Beograd : Savez inženjera i tehničara Srbije, 2023)

TY  - JOUR
AU  - Mitrašinović, Aleksandar
AU  - Nešković, Jasmina
AU  - Labus, Nebojša
AU  - Radosavljević, Milinko
PY  - 2023
UR  - https://dais.sanu.ac.rs/123456789/14224
AB  - Očvršćavanje legura aluminijuma se najčešće odvija u termootpornim oblogama sačinjenim ili od metala ili od oksida koji su stabilni na visokim temperaturama. Značajno različita toplotna provodljivost između metala i termootpornih oksida prouzrokuje očvršćavanje sa različitim brzinama hlađenja. U ovom radu smo formirali sekundarnu leguru Al-8wt%Si-3wt%Cu u kalupu od nerđajućeg čelika, tankozidnoj čaši od nerđajućeg čelika i debelozidnoj čaši od cirkonijum oksida. Tok formiranja očvrsle strukture je praćen zaronjenim termoparovima koji su omogućili kompjutersku analizu krive hlađenja. Parametri na koje je brzina hlađenja imala najznačajniji uticaj su vrednosti pothlađenja formiranja primarnih kristala aluminijuma, vreme rasta primarnih kristala aluminijuma i ukupno vreme očvršćavanja od pojave prvih čvrstih kristala do formiranja potpuno očvrsle strukture. Al-8wt%Si-3wt%Cu legura aluminijuma formirana u metalnim kalupima ima manju veličinu zrna i posledočno veću zateznu čvrstoću, manju makroporoznost i manje hrapavu površinu od legure formirane u oblogama od termootpornih oksida. Ispitivane termootporne obloge su uticale na formiranje tri osnovna mikrokonstituenta u Al-8wt%Si-3wt%Cu leguri u različitim vremenskim intervalima, što je dovelo do formiranja različite mikrostrukture, gde odluka o izboru materijala termootporne obloge zavisi od isplativosti celokupnog procesa, zahtevanog kvaliteta spoljnih površina i zahtevane minimalne čvrstoće konačnog proizvoda.
AB  - Solidification of the aluminum alloys takes place in heat-resistant refractory materials made of either metal or oxides that are stable at high temperatures. The significantly different thermal conductivities between metals and heat-resistant oxides cause solidification with significantly different cooling rates. In this work, we formed a secondary Al-8wt%Si-3wt%Cu alloy in a stainless steel mould, a thin-walled stainless steel cup, and a thick-walled zirconium oxide cup. The course of the formation of the solidified structure was monitored by immersed thermocouples, which enabled the computer analysis of the cooling curves. The parameters on which the cooling rate had the most significant influence are the undercooling values of the formation of primary aluminum crystals, the time of the growth of primary aluminum crystals and the total solidification time from the formation of the first solid crystals to the formation of a fully solidified structure. The Al-8wt%Si-3wt%Cu aluminum alloy formed in metal mould has a smaller grain size and consequently higher tensile strength, lower macro-porosity and less rough surface than the alloy formed in refractory oxide coatings. The examined heat-resistant refractory material influenced the formation of three basic micro-constituents in the Al-8wt%Si-3wt%Cu alloy in different time intervals, which led to the formation of a different microstructure, where the decision on the choice of material for the heat-resistant refractory material depends on the profitability of the entire process, the required quality of the external surfaces and required minimum strength of the final product.
PB  - Beograd : Savez inženjera i tehničara Srbije
T2  - Tehnika
T1  - The effect of the refractory material on the phase transformation parameteres during forming of the Al-8wt%Si-3wt%Cu structure
T1  - Uticaj termootporne obloge na parametre fazne transformacije tokom formiranja Al-8wt%Si-3wt%Cu strukture
SP  - 9
EP  - 14
VL  - 78
IS  - 1
DO  - 10.5937/tehnika2301009M
UR  - https://hdl.handle.net/21.15107/rcub_dais_14224
ER  - 
@article{
author = "Mitrašinović, Aleksandar and Nešković, Jasmina and Labus, Nebojša and Radosavljević, Milinko",
year = "2023",
abstract = "Očvršćavanje legura aluminijuma se najčešće odvija u termootpornim oblogama sačinjenim ili od metala ili od oksida koji su stabilni na visokim temperaturama. Značajno različita toplotna provodljivost između metala i termootpornih oksida prouzrokuje očvršćavanje sa različitim brzinama hlađenja. U ovom radu smo formirali sekundarnu leguru Al-8wt%Si-3wt%Cu u kalupu od nerđajućeg čelika, tankozidnoj čaši od nerđajućeg čelika i debelozidnoj čaši od cirkonijum oksida. Tok formiranja očvrsle strukture je praćen zaronjenim termoparovima koji su omogućili kompjutersku analizu krive hlađenja. Parametri na koje je brzina hlađenja imala najznačajniji uticaj su vrednosti pothlađenja formiranja primarnih kristala aluminijuma, vreme rasta primarnih kristala aluminijuma i ukupno vreme očvršćavanja od pojave prvih čvrstih kristala do formiranja potpuno očvrsle strukture. Al-8wt%Si-3wt%Cu legura aluminijuma formirana u metalnim kalupima ima manju veličinu zrna i posledočno veću zateznu čvrstoću, manju makroporoznost i manje hrapavu površinu od legure formirane u oblogama od termootpornih oksida. Ispitivane termootporne obloge su uticale na formiranje tri osnovna mikrokonstituenta u Al-8wt%Si-3wt%Cu leguri u različitim vremenskim intervalima, što je dovelo do formiranja različite mikrostrukture, gde odluka o izboru materijala termootporne obloge zavisi od isplativosti celokupnog procesa, zahtevanog kvaliteta spoljnih površina i zahtevane minimalne čvrstoće konačnog proizvoda., Solidification of the aluminum alloys takes place in heat-resistant refractory materials made of either metal or oxides that are stable at high temperatures. The significantly different thermal conductivities between metals and heat-resistant oxides cause solidification with significantly different cooling rates. In this work, we formed a secondary Al-8wt%Si-3wt%Cu alloy in a stainless steel mould, a thin-walled stainless steel cup, and a thick-walled zirconium oxide cup. The course of the formation of the solidified structure was monitored by immersed thermocouples, which enabled the computer analysis of the cooling curves. The parameters on which the cooling rate had the most significant influence are the undercooling values of the formation of primary aluminum crystals, the time of the growth of primary aluminum crystals and the total solidification time from the formation of the first solid crystals to the formation of a fully solidified structure. The Al-8wt%Si-3wt%Cu aluminum alloy formed in metal mould has a smaller grain size and consequently higher tensile strength, lower macro-porosity and less rough surface than the alloy formed in refractory oxide coatings. The examined heat-resistant refractory material influenced the formation of three basic micro-constituents in the Al-8wt%Si-3wt%Cu alloy in different time intervals, which led to the formation of a different microstructure, where the decision on the choice of material for the heat-resistant refractory material depends on the profitability of the entire process, the required quality of the external surfaces and required minimum strength of the final product.",
publisher = "Beograd : Savez inženjera i tehničara Srbije",
journal = "Tehnika",
title = "The effect of the refractory material on the phase transformation parameteres during forming of the Al-8wt%Si-3wt%Cu structure, Uticaj termootporne obloge na parametre fazne transformacije tokom formiranja Al-8wt%Si-3wt%Cu strukture",
pages = "9-14",
volume = "78",
number = "1",
doi = "10.5937/tehnika2301009M",
url = "https://hdl.handle.net/21.15107/rcub_dais_14224"
}
Mitrašinović, A., Nešković, J., Labus, N.,& Radosavljević, M.. (2023). The effect of the refractory material on the phase transformation parameteres during forming of the Al-8wt%Si-3wt%Cu structure. in Tehnika
Beograd : Savez inženjera i tehničara Srbije., 78(1), 9-14.
https://doi.org/10.5937/tehnika2301009M
https://hdl.handle.net/21.15107/rcub_dais_14224
Mitrašinović A, Nešković J, Labus N, Radosavljević M. The effect of the refractory material on the phase transformation parameteres during forming of the Al-8wt%Si-3wt%Cu structure. in Tehnika. 2023;78(1):9-14.
doi:10.5937/tehnika2301009M
https://hdl.handle.net/21.15107/rcub_dais_14224 .
Mitrašinović, Aleksandar, Nešković, Jasmina, Labus, Nebojša, Radosavljević, Milinko, "The effect of the refractory material on the phase transformation parameteres during forming of the Al-8wt%Si-3wt%Cu structure" in Tehnika, 78, no. 1 (2023):9-14,
https://doi.org/10.5937/tehnika2301009M .,
https://hdl.handle.net/21.15107/rcub_dais_14224 .
1

Oxide powder mixture with poly-vinyl alcohol (PVA) and added polyethylene glycol (PEG) as plasticizer

Labus, Nebojša; Krstić, Jugoslav; Matijašević, Srđan; Pavlović, Vladimir B.

(Belgrade : ETRAN, 2023)

TY  - JOUR
AU  - Labus, Nebojša
AU  - Krstić, Jugoslav
AU  - Matijašević, Srđan
AU  - Pavlović, Vladimir B.
PY  - 2023
UR  - https://dais.sanu.ac.rs/123456789/14120
AB  - Powder mixture consisted of ZnO, Mn2O3 (MnCO3) and Fe2O3 blended powders, was found laminating during compaction. Polyvinyl alcohol (PVA) and a combination of PVA with polyethylene glycol (PEG) added as a plasticizer, were introduced as polymer binders to improve the compaction of oxide mixtures. It has been done by forming a suspension of oxide mixture and varying the polymer solution concentration and composition. By evaporating the solvent, new materials were obtained, which consist of oxide particles bound via polymer. In such a manner obtained hybrid materials were characterized with attenuated total reflection Fourier transformed infrared (ATR-FTIR) spectroscopy, differential thermal analysis (DTA) and transmission electron microscopy (TEM). The oxide polymer material was compacted at 200 MPa and the expansion of this compact during heating was monitored in temperature range up to 550 ºC with dilatometer. It was found that PVA forms graft polymer with PEG and specific interaction with oxide particles surface was revealed.
PB  - Belgrade : ETRAN
T2  - Science of Sintering
T1  - Oxide powder mixture with poly-vinyl alcohol (PVA) and added polyethylene glycol (PEG) as plasticizer
UR  - https://hdl.handle.net/21.15107/rcub_dais_14120
ER  - 
@article{
author = "Labus, Nebojša and Krstić, Jugoslav and Matijašević, Srđan and Pavlović, Vladimir B.",
year = "2023",
abstract = "Powder mixture consisted of ZnO, Mn2O3 (MnCO3) and Fe2O3 blended powders, was found laminating during compaction. Polyvinyl alcohol (PVA) and a combination of PVA with polyethylene glycol (PEG) added as a plasticizer, were introduced as polymer binders to improve the compaction of oxide mixtures. It has been done by forming a suspension of oxide mixture and varying the polymer solution concentration and composition. By evaporating the solvent, new materials were obtained, which consist of oxide particles bound via polymer. In such a manner obtained hybrid materials were characterized with attenuated total reflection Fourier transformed infrared (ATR-FTIR) spectroscopy, differential thermal analysis (DTA) and transmission electron microscopy (TEM). The oxide polymer material was compacted at 200 MPa and the expansion of this compact during heating was monitored in temperature range up to 550 ºC with dilatometer. It was found that PVA forms graft polymer with PEG and specific interaction with oxide particles surface was revealed.",
publisher = "Belgrade : ETRAN",
journal = "Science of Sintering",
title = "Oxide powder mixture with poly-vinyl alcohol (PVA) and added polyethylene glycol (PEG) as plasticizer",
url = "https://hdl.handle.net/21.15107/rcub_dais_14120"
}
Labus, N., Krstić, J., Matijašević, S.,& Pavlović, V. B.. (2023). Oxide powder mixture with poly-vinyl alcohol (PVA) and added polyethylene glycol (PEG) as plasticizer. in Science of Sintering
Belgrade : ETRAN..
https://hdl.handle.net/21.15107/rcub_dais_14120
Labus N, Krstić J, Matijašević S, Pavlović VB. Oxide powder mixture with poly-vinyl alcohol (PVA) and added polyethylene glycol (PEG) as plasticizer. in Science of Sintering. 2023;.
https://hdl.handle.net/21.15107/rcub_dais_14120 .
Labus, Nebojša, Krstić, Jugoslav, Matijašević, Srđan, Pavlović, Vladimir B., "Oxide powder mixture with poly-vinyl alcohol (PVA) and added polyethylene glycol (PEG) as plasticizer" in Science of Sintering (2023),
https://hdl.handle.net/21.15107/rcub_dais_14120 .

Humidity and Temperature Sensing of Mixed Nickel–Magnesium Spinel Ferrites

Dojčinović, Milena P.; Vasiljević, Zorka Ž.; Rakočević, Lazar; Pavlović, Vera P.; Ammar-Merah, Souad; Vujančević, Jelena D.; Nikolić, Maria Vesna

(Basel : MDPI AG, 2023)

TY  - JOUR
AU  - Dojčinović, Milena P.
AU  - Vasiljević, Zorka Ž.
AU  - Rakočević, Lazar
AU  - Pavlović, Vera P.
AU  - Ammar-Merah, Souad
AU  - Vujančević, Jelena D.
AU  - Nikolić, Maria Vesna
PY  - 2023
UR  - https://dais.sanu.ac.rs/123456789/14025
AB  - Temperature- and humidity-sensing properties were evaluated of NixMg1-x spinel ferrites (0 ≤ x ≤ 1) synthesized by a sol-gel combustion method using citric acid as fuel and nitrate ions as oxidizing agents. After the exothermic reaction, amorphous powders were calcined at 700 °C followed by characterization with XRD, FTIR, XPS, EDS and Raman spectroscopy and FESEM microscopy. Synthesized powders were tested as humidity- and temperature-sensing materials in the form of thick films on interdigitated electrodes on alumina substrate in a climatic chamber. The physicochemical investigation of synthesized materials revealed a cubic spinel Fd3¯m phase, nanosized but agglomerated particles with a partially to completely inverse spinel structure with increasing Ni content. Ni0.1Mg0.9Fe2O4 showed the highest material constant (B30,90) value of 3747 K and temperature sensitivity (α) of −4.08%/K compared to pure magnesium ferrite (B30,90 value of 3426 K and α of −3.73%/K) and the highest average sensitivity towards humidity of 922 kΩ/%RH in the relative humidity (RH) range of 40–90% at the working temperature of 25 °C.
PB  - Basel : MDPI AG
T2  - Chemosensors
T1  - Humidity and Temperature Sensing of Mixed Nickel–Magnesium Spinel Ferrites
SP  - 34
VL  - 11
IS  - 1
DO  - 10.3390/chemosensors11010034
UR  - https://hdl.handle.net/21.15107/rcub_dais_14025
ER  - 
@article{
author = "Dojčinović, Milena P. and Vasiljević, Zorka Ž. and Rakočević, Lazar and Pavlović, Vera P. and Ammar-Merah, Souad and Vujančević, Jelena D. and Nikolić, Maria Vesna",
year = "2023",
abstract = "Temperature- and humidity-sensing properties were evaluated of NixMg1-x spinel ferrites (0 ≤ x ≤ 1) synthesized by a sol-gel combustion method using citric acid as fuel and nitrate ions as oxidizing agents. After the exothermic reaction, amorphous powders were calcined at 700 °C followed by characterization with XRD, FTIR, XPS, EDS and Raman spectroscopy and FESEM microscopy. Synthesized powders were tested as humidity- and temperature-sensing materials in the form of thick films on interdigitated electrodes on alumina substrate in a climatic chamber. The physicochemical investigation of synthesized materials revealed a cubic spinel Fd3¯m phase, nanosized but agglomerated particles with a partially to completely inverse spinel structure with increasing Ni content. Ni0.1Mg0.9Fe2O4 showed the highest material constant (B30,90) value of 3747 K and temperature sensitivity (α) of −4.08%/K compared to pure magnesium ferrite (B30,90 value of 3426 K and α of −3.73%/K) and the highest average sensitivity towards humidity of 922 kΩ/%RH in the relative humidity (RH) range of 40–90% at the working temperature of 25 °C.",
publisher = "Basel : MDPI AG",
journal = "Chemosensors",
title = "Humidity and Temperature Sensing of Mixed Nickel–Magnesium Spinel Ferrites",
pages = "34",
volume = "11",
number = "1",
doi = "10.3390/chemosensors11010034",
url = "https://hdl.handle.net/21.15107/rcub_dais_14025"
}
Dojčinović, M. P., Vasiljević, Z. Ž., Rakočević, L., Pavlović, V. P., Ammar-Merah, S., Vujančević, J. D.,& Nikolić, M. V.. (2023). Humidity and Temperature Sensing of Mixed Nickel–Magnesium Spinel Ferrites. in Chemosensors
Basel : MDPI AG., 11(1), 34.
https://doi.org/10.3390/chemosensors11010034
https://hdl.handle.net/21.15107/rcub_dais_14025
Dojčinović MP, Vasiljević ZŽ, Rakočević L, Pavlović VP, Ammar-Merah S, Vujančević JD, Nikolić MV. Humidity and Temperature Sensing of Mixed Nickel–Magnesium Spinel Ferrites. in Chemosensors. 2023;11(1):34.
doi:10.3390/chemosensors11010034
https://hdl.handle.net/21.15107/rcub_dais_14025 .
Dojčinović, Milena P., Vasiljević, Zorka Ž., Rakočević, Lazar, Pavlović, Vera P., Ammar-Merah, Souad, Vujančević, Jelena D., Nikolić, Maria Vesna, "Humidity and Temperature Sensing of Mixed Nickel–Magnesium Spinel Ferrites" in Chemosensors, 11, no. 1 (2023):34,
https://doi.org/10.3390/chemosensors11010034 .,
https://hdl.handle.net/21.15107/rcub_dais_14025 .
1
1

Synthesis and Biological Properties of Alanine-Grafted Hydroxyapatite Nanoparticles

Dorm, Bruna Carolina; Iemma, Mônica Rosas Costa; Neto, Benedito Domingos; Francisco, Rauany Cristina Lopes; Dinić, Ivana; Ignjatović, Nenad; Marković, Smilja; Vuković, Marina; Škapin, Srečo; Trovatti, Eliane; Mančić, Lidija

(2023)

TY  - JOUR
AU  - Dorm, Bruna Carolina
AU  - Iemma, Mônica Rosas Costa
AU  - Neto, Benedito Domingos
AU  - Francisco, Rauany Cristina Lopes
AU  - Dinić, Ivana
AU  - Ignjatović, Nenad
AU  - Marković, Smilja
AU  - Vuković, Marina
AU  - Škapin, Srečo
AU  - Trovatti, Eliane
AU  - Mančić, Lidija
PY  - 2023
UR  - https://dais.sanu.ac.rs/123456789/13685
AB  - Hydroxyapatite attracts great attention as hard tissues implant material for bones and teeth. Its application in reconstructive medicine depends on its biocompatibility, which is in a function of composition and surface properties. The insertion of a protein element in the composition of implants can improve the cell adhesion and the osseointegration. Having this in mind, the proposal of this work was to develop L-alanine-grafted hydroxyapatite nanoparticles and to study their biocompatibility. Two L-alanine sources and three grafting methods were used for hydroxyapatite surface functionalization. The efficiency of grafting was determined based on X-ray powder diffraction, Fourier-transform infrared spectroscopy, thermal analyses, and field-emission scanning electron microscopy. The results indicated the formation of hydroxyapatite with 8–25 wt% of organic content, depending on the grafting method. Protein adsorption, cell adhesion, and viability studies were carried out to evaluate biological properties of grafted materials. The viability of MG-63 human osteoblastic cells following 24 h incubation with the alanine-grafted hydroxyapatite samples is well preserved, being in all cases above the viability of cells incubated with hydroxyapatite. The alanine-grafted hydroxyapatite prepared in situ and by simple mixture showed higher protein adsorption and cell adhesion, respectively, indicating their potential toward use in regenerative medicine.
T2  - Life
T1  - Synthesis and Biological Properties of Alanine-Grafted Hydroxyapatite Nanoparticles
SP  - 116
VL  - 13
IS  - 1
DO  - 10.3390/life13010116
UR  - https://hdl.handle.net/21.15107/rcub_dais_13685
ER  - 
@article{
author = "Dorm, Bruna Carolina and Iemma, Mônica Rosas Costa and Neto, Benedito Domingos and Francisco, Rauany Cristina Lopes and Dinić, Ivana and Ignjatović, Nenad and Marković, Smilja and Vuković, Marina and Škapin, Srečo and Trovatti, Eliane and Mančić, Lidija",
year = "2023",
abstract = "Hydroxyapatite attracts great attention as hard tissues implant material for bones and teeth. Its application in reconstructive medicine depends on its biocompatibility, which is in a function of composition and surface properties. The insertion of a protein element in the composition of implants can improve the cell adhesion and the osseointegration. Having this in mind, the proposal of this work was to develop L-alanine-grafted hydroxyapatite nanoparticles and to study their biocompatibility. Two L-alanine sources and three grafting methods were used for hydroxyapatite surface functionalization. The efficiency of grafting was determined based on X-ray powder diffraction, Fourier-transform infrared spectroscopy, thermal analyses, and field-emission scanning electron microscopy. The results indicated the formation of hydroxyapatite with 8–25 wt% of organic content, depending on the grafting method. Protein adsorption, cell adhesion, and viability studies were carried out to evaluate biological properties of grafted materials. The viability of MG-63 human osteoblastic cells following 24 h incubation with the alanine-grafted hydroxyapatite samples is well preserved, being in all cases above the viability of cells incubated with hydroxyapatite. The alanine-grafted hydroxyapatite prepared in situ and by simple mixture showed higher protein adsorption and cell adhesion, respectively, indicating their potential toward use in regenerative medicine.",
journal = "Life",
title = "Synthesis and Biological Properties of Alanine-Grafted Hydroxyapatite Nanoparticles",
pages = "116",
volume = "13",
number = "1",
doi = "10.3390/life13010116",
url = "https://hdl.handle.net/21.15107/rcub_dais_13685"
}
Dorm, B. C., Iemma, M. R. C., Neto, B. D., Francisco, R. C. L., Dinić, I., Ignjatović, N., Marković, S., Vuković, M., Škapin, S., Trovatti, E.,& Mančić, L.. (2023). Synthesis and Biological Properties of Alanine-Grafted Hydroxyapatite Nanoparticles. in Life, 13(1), 116.
https://doi.org/10.3390/life13010116
https://hdl.handle.net/21.15107/rcub_dais_13685
Dorm BC, Iemma MRC, Neto BD, Francisco RCL, Dinić I, Ignjatović N, Marković S, Vuković M, Škapin S, Trovatti E, Mančić L. Synthesis and Biological Properties of Alanine-Grafted Hydroxyapatite Nanoparticles. in Life. 2023;13(1):116.
doi:10.3390/life13010116
https://hdl.handle.net/21.15107/rcub_dais_13685 .
Dorm, Bruna Carolina, Iemma, Mônica Rosas Costa, Neto, Benedito Domingos, Francisco, Rauany Cristina Lopes, Dinić, Ivana, Ignjatović, Nenad, Marković, Smilja, Vuković, Marina, Škapin, Srečo, Trovatti, Eliane, Mančić, Lidija, "Synthesis and Biological Properties of Alanine-Grafted Hydroxyapatite Nanoparticles" in Life, 13, no. 1 (2023):116,
https://doi.org/10.3390/life13010116 .,
https://hdl.handle.net/21.15107/rcub_dais_13685 .
2

A Novel Two-Step Electrochemical Deposition Method for Sn-Pd Electrocatalyst Synthesis for a Potential Application in Direct Ethanol Fuel Cells

Lović, Jelena; Eraković Pantović, Sanja; Rakočević, Lazar; Ignjatović, Nenad; Dimitrijević, Silvana B.; Nikolić, Nebojša D.

(2023)

TY  - JOUR
AU  - Lović, Jelena
AU  - Eraković Pantović, Sanja
AU  - Rakočević, Lazar
AU  - Ignjatović, Nenad
AU  - Dimitrijević, Silvana B.
AU  - Nikolić, Nebojša D.
PY  - 2023
UR  - https://dais.sanu.ac.rs/123456789/13684
AB  - Sn-Pd electrocatalysts with a constant atomic ratio of 60 at.% Sn‒40 at.% Pd suitable for potential application in direct ethanol fuel cells were synthesized using a novel two-step electrodeposition method. First, Sn was electrodeposited in various forms of dendrites, from spear-like and needle-like to individual fern-like dendrites to a network of intertwined fern-like dendrites, by varying the cathodic potential and then performing electrodeposition of Pd at a constant current density in the second step. A morphological and elemental analysis of Sn and Sn-Pd electrocatalysts was performed using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS) techniques, while the size of Sn dendrites was analyzed using the particle size distribution (PSD) method. Cyclic voltammetry (CV) and chronoamperometry were applied in order to study the catalytic behavior of Sn-Pd electrocatalysts in the ethanol oxidation reaction (EOR), while CO stripping was used to estimate the antipoisoning capability of the electrocatalysts. The Sn surface morphology of the sub-layer was highly correlated with the electrocatalytic activity of the examined Sn-Pd electrocatalysts. The high activity it presented towards the EOR showed the suitability of the Sn-Pd electrocatalyst constructed from individual fern-like Sn dendrites as a sub-layer. Compared to Pd alone, this Sn-Pd catalyst showed more than 3 times higher activity and improved EOR kinetics. This enhancement in the catalytic activity of the Sn-Pd electrocatalysts is attributed to both the morphological characteristics of Sn as a sub-layer and the bifunctional effect.
T2  - Processes
T1  - A Novel Two-Step Electrochemical Deposition Method for Sn-Pd Electrocatalyst Synthesis for a Potential Application in Direct Ethanol Fuel Cells
SP  - 120
VL  - 11
IS  - 1
DO  - 10.3390/pr11010120
UR  - https://hdl.handle.net/21.15107/rcub_dais_13684
ER  - 
@article{
author = "Lović, Jelena and Eraković Pantović, Sanja and Rakočević, Lazar and Ignjatović, Nenad and Dimitrijević, Silvana B. and Nikolić, Nebojša D.",
year = "2023",
abstract = "Sn-Pd electrocatalysts with a constant atomic ratio of 60 at.% Sn‒40 at.% Pd suitable for potential application in direct ethanol fuel cells were synthesized using a novel two-step electrodeposition method. First, Sn was electrodeposited in various forms of dendrites, from spear-like and needle-like to individual fern-like dendrites to a network of intertwined fern-like dendrites, by varying the cathodic potential and then performing electrodeposition of Pd at a constant current density in the second step. A morphological and elemental analysis of Sn and Sn-Pd electrocatalysts was performed using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS) techniques, while the size of Sn dendrites was analyzed using the particle size distribution (PSD) method. Cyclic voltammetry (CV) and chronoamperometry were applied in order to study the catalytic behavior of Sn-Pd electrocatalysts in the ethanol oxidation reaction (EOR), while CO stripping was used to estimate the antipoisoning capability of the electrocatalysts. The Sn surface morphology of the sub-layer was highly correlated with the electrocatalytic activity of the examined Sn-Pd electrocatalysts. The high activity it presented towards the EOR showed the suitability of the Sn-Pd electrocatalyst constructed from individual fern-like Sn dendrites as a sub-layer. Compared to Pd alone, this Sn-Pd catalyst showed more than 3 times higher activity and improved EOR kinetics. This enhancement in the catalytic activity of the Sn-Pd electrocatalysts is attributed to both the morphological characteristics of Sn as a sub-layer and the bifunctional effect.",
journal = "Processes",
title = "A Novel Two-Step Electrochemical Deposition Method for Sn-Pd Electrocatalyst Synthesis for a Potential Application in Direct Ethanol Fuel Cells",
pages = "120",
volume = "11",
number = "1",
doi = "10.3390/pr11010120",
url = "https://hdl.handle.net/21.15107/rcub_dais_13684"
}
Lović, J., Eraković Pantović, S., Rakočević, L., Ignjatović, N., Dimitrijević, S. B.,& Nikolić, N. D.. (2023). A Novel Two-Step Electrochemical Deposition Method for Sn-Pd Electrocatalyst Synthesis for a Potential Application in Direct Ethanol Fuel Cells. in Processes, 11(1), 120.
https://doi.org/10.3390/pr11010120
https://hdl.handle.net/21.15107/rcub_dais_13684
Lović J, Eraković Pantović S, Rakočević L, Ignjatović N, Dimitrijević SB, Nikolić ND. A Novel Two-Step Electrochemical Deposition Method for Sn-Pd Electrocatalyst Synthesis for a Potential Application in Direct Ethanol Fuel Cells. in Processes. 2023;11(1):120.
doi:10.3390/pr11010120
https://hdl.handle.net/21.15107/rcub_dais_13684 .
Lović, Jelena, Eraković Pantović, Sanja, Rakočević, Lazar, Ignjatović, Nenad, Dimitrijević, Silvana B., Nikolić, Nebojša D., "A Novel Two-Step Electrochemical Deposition Method for Sn-Pd Electrocatalyst Synthesis for a Potential Application in Direct Ethanol Fuel Cells" in Processes, 11, no. 1 (2023):120,
https://doi.org/10.3390/pr11010120 .,
https://hdl.handle.net/21.15107/rcub_dais_13684 .

Properties of Hydroxyapatite-Based Biomaterials Important for Interactions with Cells and Tissues

Živković, Jelena M.; Ignjatović, Nenad; Najman, Stevo

(Springer International Publishing, 2023)

TY  - CHAP
AU  - Živković, Jelena M.
AU  - Ignjatović, Nenad
AU  - Najman, Stevo
PY  - 2023
UR  - https://dais.sanu.ac.rs/123456789/13683
AB  - Mammal bone tissue is mainly composed of an inorganic component consisting of calcium phosphate (CaPCalcium phosphateCaP) ceramics, predominantly calcium hydroxyapatiteCalcium phosphatecalcium hydroxyapatite (HAp)Calcium phosphateHAp, in addition to the organic component. Properties of HAp enable the modification of its structure, surface, design of particle size at the micro and the macro levels, hybridization with polymers, metals, etc., which makes it a very important biomaterial in the future as well. The properties of HAp can be improved by combination with a large number of therapeuticBiomaterialtherapeuticCalcium phosphateBioceramics and/or diagnosticBiomaterialdiagnosticBioceramicsCalcium phosphate agents. CaP and HAp occupy a significant place in the research of different types of multifunctionalMaterialsmultifunctional and hybridMaterialshybrid materials for potential application in diagnostic, preventiveMaterialspreventive, oncological, reconstructiveMaterialsreconstructiveRegenerative medicine and regenerative medicine. There are numerous data on the properties of HAp and HAp-based biomaterials relevant to their use, such as composition, particle sizeBiomaterialparticle sizeBioceramicsCalcium phosphate, material shape, porosity, surface charge, topography, etc. This chapter also discusses the different properties of hydroxyapatite and hydroxyapatite-based biomaterials important for interactionBiomaterialinteractionTissueCell with cells and tissues. In addition to references to literature data, the results of our research with different hydroxyapatite-based biomaterials in different in vitroModelsin vitroCellMethod and in vivoModelsin vivoMethodTissue engineering experimentalModelsexperimental modelsModels in the field of bone tissue engineeringTissue engineeringbone tissue engineering and regenerative medicine are presented.
PB  - Springer International Publishing
T2  - Bioceramics, Biomimetic and Other Compatible Materials Features for Medical Applications
T1  - Properties of Hydroxyapatite-Based Biomaterials Important for Interactions with Cells and Tissues
SP  - 115
EP  - 135
DO  - 10.1007/978-3-031-17269-4_6
UR  - https://hdl.handle.net/21.15107/rcub_dais_13683
ER  - 
@inbook{
author = "Živković, Jelena M. and Ignjatović, Nenad and Najman, Stevo",
year = "2023",
abstract = "Mammal bone tissue is mainly composed of an inorganic component consisting of calcium phosphate (CaPCalcium phosphateCaP) ceramics, predominantly calcium hydroxyapatiteCalcium phosphatecalcium hydroxyapatite (HAp)Calcium phosphateHAp, in addition to the organic component. Properties of HAp enable the modification of its structure, surface, design of particle size at the micro and the macro levels, hybridization with polymers, metals, etc., which makes it a very important biomaterial in the future as well. The properties of HAp can be improved by combination with a large number of therapeuticBiomaterialtherapeuticCalcium phosphateBioceramics and/or diagnosticBiomaterialdiagnosticBioceramicsCalcium phosphate agents. CaP and HAp occupy a significant place in the research of different types of multifunctionalMaterialsmultifunctional and hybridMaterialshybrid materials for potential application in diagnostic, preventiveMaterialspreventive, oncological, reconstructiveMaterialsreconstructiveRegenerative medicine and regenerative medicine. There are numerous data on the properties of HAp and HAp-based biomaterials relevant to their use, such as composition, particle sizeBiomaterialparticle sizeBioceramicsCalcium phosphate, material shape, porosity, surface charge, topography, etc. This chapter also discusses the different properties of hydroxyapatite and hydroxyapatite-based biomaterials important for interactionBiomaterialinteractionTissueCell with cells and tissues. In addition to references to literature data, the results of our research with different hydroxyapatite-based biomaterials in different in vitroModelsin vitroCellMethod and in vivoModelsin vivoMethodTissue engineering experimentalModelsexperimental modelsModels in the field of bone tissue engineeringTissue engineeringbone tissue engineering and regenerative medicine are presented.",
publisher = "Springer International Publishing",
journal = "Bioceramics, Biomimetic and Other Compatible Materials Features for Medical Applications",
booktitle = "Properties of Hydroxyapatite-Based Biomaterials Important for Interactions with Cells and Tissues",
pages = "115-135",
doi = "10.1007/978-3-031-17269-4_6",
url = "https://hdl.handle.net/21.15107/rcub_dais_13683"
}
Živković, J. M., Ignjatović, N.,& Najman, S.. (2023). Properties of Hydroxyapatite-Based Biomaterials Important for Interactions with Cells and Tissues. in Bioceramics, Biomimetic and Other Compatible Materials Features for Medical Applications
Springer International Publishing., 115-135.
https://doi.org/10.1007/978-3-031-17269-4_6
https://hdl.handle.net/21.15107/rcub_dais_13683
Živković JM, Ignjatović N, Najman S. Properties of Hydroxyapatite-Based Biomaterials Important for Interactions with Cells and Tissues. in Bioceramics, Biomimetic and Other Compatible Materials Features for Medical Applications. 2023;:115-135.
doi:10.1007/978-3-031-17269-4_6
https://hdl.handle.net/21.15107/rcub_dais_13683 .
Živković, Jelena M., Ignjatović, Nenad, Najman, Stevo, "Properties of Hydroxyapatite-Based Biomaterials Important for Interactions with Cells and Tissues" in Bioceramics, Biomimetic and Other Compatible Materials Features for Medical Applications (2023):115-135,
https://doi.org/10.1007/978-3-031-17269-4_6 .,
https://hdl.handle.net/21.15107/rcub_dais_13683 .
1