Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200024 (University of Belgrade, Institute of Physics, Belgrade-Zemun)

Link to this page

info:eu-repo/grantAgreement/MESTD/inst-2020/200024/RS//

Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200024 (University of Belgrade, Institute of Physics, Belgrade-Zemun) (en)
Ministarstvo prosvete, nauke i tehnološkog razvoja Republike Srbije, Ugovor br. 451-03-68/2020-14/200024 (Univerzitet u Beogradu, Institut za fiziku, Beograd-Zemun) (sr_RS)
Министарство просвете, науке и технолошког развоја Републике Србије, Уговор бр. 451-03-68/2020-14/200024 (Универзитет у Београду, Институт за физику, Београд-Земун) (sr)
Authors

Publications

Effect of processing parameters on NaGdYF4:Yb,Er UCNPs structural, morphological and optical properties

Dinić, Ivana; Vuković, Marina; Nikolić, Marko G.; Mančić, Lidija

(Belgrade : Institute of Technical Sciences of SASA, 2021)

TY  - CONF
AU  - Dinić, Ivana
AU  - Vuković, Marina
AU  - Nikolić, Marko G.
AU  - Mančić, Lidija
PY  - 2021
UR  - https://dais.sanu.ac.rs/123456789/12276
AB  - Synthesis of monosized and spherical Up-Converting NanoParticles (UCNPs) with biocompatible surface are of a great interest because of their potential application in biomedicine as biomarkers or drug delivery systems. Among different synthesis routes reported in the literature, a hydro/solvo thermal method is consider to be most potential one for scaling-up due fact that is simple and economically cost-effective. In this work the synthesis of NaY0.65Gd0.15F4:Yb,Er UCNPs were performed through chitosan assistant solvothermal synthesis at 200oC. Variation of precursors concentration, type of solvent and synthesis time were performed in order to explore their influence on the structural, morphological and optical properties of the UCNPs. The XRD analysis showed that with a smaller surplus of fluoride ions the formation of Y0.65Gd0.15F4:Yb,Er orthorhombic phase occurs, while the increase of fluoride content or reaction time leads to NaY0.65Gd0.15F4:Yb,Er cubic phase formation. Along with it, the changes of UCNPs morphology from spindle to spherical shape is detected. All samples emitintense green emission due to the (2H11/2, 4S3/2) → 4I15/2electronic transitions, after been excited with infrared light (λ=978 nm).
PB  - Belgrade : Institute of Technical Sciences of SASA
C3  - Program and the Book of abstracts / Nineteenth Young Researchers' Conference Materials Science and Engineering, December 1-3, 2021, Belgrade, Serbia
T1  - Effect of processing parameters on NaGdYF4:Yb,Er UCNPs structural, morphological and optical properties
SP  - 29
EP  - 29
UR  - https://hdl.handle.net/21.15107/rcub_dais_12276
ER  - 
@conference{
author = "Dinić, Ivana and Vuković, Marina and Nikolić, Marko G. and Mančić, Lidija",
year = "2021",
abstract = "Synthesis of monosized and spherical Up-Converting NanoParticles (UCNPs) with biocompatible surface are of a great interest because of their potential application in biomedicine as biomarkers or drug delivery systems. Among different synthesis routes reported in the literature, a hydro/solvo thermal method is consider to be most potential one for scaling-up due fact that is simple and economically cost-effective. In this work the synthesis of NaY0.65Gd0.15F4:Yb,Er UCNPs were performed through chitosan assistant solvothermal synthesis at 200oC. Variation of precursors concentration, type of solvent and synthesis time were performed in order to explore their influence on the structural, morphological and optical properties of the UCNPs. The XRD analysis showed that with a smaller surplus of fluoride ions the formation of Y0.65Gd0.15F4:Yb,Er orthorhombic phase occurs, while the increase of fluoride content or reaction time leads to NaY0.65Gd0.15F4:Yb,Er cubic phase formation. Along with it, the changes of UCNPs morphology from spindle to spherical shape is detected. All samples emitintense green emission due to the (2H11/2, 4S3/2) → 4I15/2electronic transitions, after been excited with infrared light (λ=978 nm).",
publisher = "Belgrade : Institute of Technical Sciences of SASA",
journal = "Program and the Book of abstracts / Nineteenth Young Researchers' Conference Materials Science and Engineering, December 1-3, 2021, Belgrade, Serbia",
title = "Effect of processing parameters on NaGdYF4:Yb,Er UCNPs structural, morphological and optical properties",
pages = "29-29",
url = "https://hdl.handle.net/21.15107/rcub_dais_12276"
}
Dinić, I., Vuković, M., Nikolić, M. G.,& Mančić, L.. (2021). Effect of processing parameters on NaGdYF4:Yb,Er UCNPs structural, morphological and optical properties. in Program and the Book of abstracts / Nineteenth Young Researchers' Conference Materials Science and Engineering, December 1-3, 2021, Belgrade, Serbia
Belgrade : Institute of Technical Sciences of SASA., 29-29.
https://hdl.handle.net/21.15107/rcub_dais_12276
Dinić I, Vuković M, Nikolić MG, Mančić L. Effect of processing parameters on NaGdYF4:Yb,Er UCNPs structural, morphological and optical properties. in Program and the Book of abstracts / Nineteenth Young Researchers' Conference Materials Science and Engineering, December 1-3, 2021, Belgrade, Serbia. 2021;:29-29.
https://hdl.handle.net/21.15107/rcub_dais_12276 .
Dinić, Ivana, Vuković, Marina, Nikolić, Marko G., Mančić, Lidija, "Effect of processing parameters on NaGdYF4:Yb,Er UCNPs structural, morphological and optical properties" in Program and the Book of abstracts / Nineteenth Young Researchers' Conference Materials Science and Engineering, December 1-3, 2021, Belgrade, Serbia (2021):29-29,
https://hdl.handle.net/21.15107/rcub_dais_12276 .

Sonochemical synthesis of up-converting β-NaYF4: Yb, Er nanoparticles

Dinić, Ivana; Vuković, Marina; Jardim, Paula M.; Nikolić, Marko G.; Mančić, Lidija

(Belgrade : Materials Research Society of Serbia, 2021)

TY  - CONF
AU  - Dinić, Ivana
AU  - Vuković, Marina
AU  - Jardim, Paula M.
AU  - Nikolić, Marko G.
AU  - Mančić, Lidija
PY  - 2021
UR  - https://dais.sanu.ac.rs/123456789/12076
AB  - Up-converting nanoparticles (UCNPs) with unique ability to convert NIR to VIS light (anti-Stokes process) have a wide application in optoelectronics, forensic, security labeling and biomedicine. Over the past few years different methods (like co-precipitation, thermal decomposition, hydro/solvothermal synthesis, etc.) are used for synthesis of β-NaYF4: Yb/Er phase, mainly from toxic organic precursors. In this work we explore conditions for stabilization of β-NaYF4: Yb/Er phase in nanoparticles applying sonochemistry synthesis of common inorganic precursor. The XRPD analysis showed that pure β phase is possible to obtained after 120 min of ultrasonification, while for shorter processing time (30-90min), cubic α-NaYF4: Yb/Er or orthorhombic YF3 : Yb,Er phase were founded too. The SEM and TEM analysis reveal presence of elongated nanoparticles self-assembled in spindles long up to 500 nm. Evolution of particle morphological and particle composition are analysed and correlated further with intensity of green emission (2H11/2,4S3/2→4I15/2) intensity measured under excitation of 978 nm.
PB  - Belgrade : Materials Research Society of Serbia
C3  - Programme and the Book of abstracts / Twenty-second Annual Conference YUCOMAT 2021 Herceg Novi, Montenegro, August 30 - September 3, 2021
T1  - Sonochemical synthesis of up-converting β-NaYF4: Yb, Er nanoparticles
SP  - 103
EP  - 103
UR  - https://hdl.handle.net/21.15107/rcub_dais_12076
ER  - 
@conference{
author = "Dinić, Ivana and Vuković, Marina and Jardim, Paula M. and Nikolić, Marko G. and Mančić, Lidija",
year = "2021",
abstract = "Up-converting nanoparticles (UCNPs) with unique ability to convert NIR to VIS light (anti-Stokes process) have a wide application in optoelectronics, forensic, security labeling and biomedicine. Over the past few years different methods (like co-precipitation, thermal decomposition, hydro/solvothermal synthesis, etc.) are used for synthesis of β-NaYF4: Yb/Er phase, mainly from toxic organic precursors. In this work we explore conditions for stabilization of β-NaYF4: Yb/Er phase in nanoparticles applying sonochemistry synthesis of common inorganic precursor. The XRPD analysis showed that pure β phase is possible to obtained after 120 min of ultrasonification, while for shorter processing time (30-90min), cubic α-NaYF4: Yb/Er or orthorhombic YF3 : Yb,Er phase were founded too. The SEM and TEM analysis reveal presence of elongated nanoparticles self-assembled in spindles long up to 500 nm. Evolution of particle morphological and particle composition are analysed and correlated further with intensity of green emission (2H11/2,4S3/2→4I15/2) intensity measured under excitation of 978 nm.",
publisher = "Belgrade : Materials Research Society of Serbia",
journal = "Programme and the Book of abstracts / Twenty-second Annual Conference YUCOMAT 2021 Herceg Novi, Montenegro, August 30 - September 3, 2021",
title = "Sonochemical synthesis of up-converting β-NaYF4: Yb, Er nanoparticles",
pages = "103-103",
url = "https://hdl.handle.net/21.15107/rcub_dais_12076"
}
Dinić, I., Vuković, M., Jardim, P. M., Nikolić, M. G.,& Mančić, L.. (2021). Sonochemical synthesis of up-converting β-NaYF4: Yb, Er nanoparticles. in Programme and the Book of abstracts / Twenty-second Annual Conference YUCOMAT 2021 Herceg Novi, Montenegro, August 30 - September 3, 2021
Belgrade : Materials Research Society of Serbia., 103-103.
https://hdl.handle.net/21.15107/rcub_dais_12076
Dinić I, Vuković M, Jardim PM, Nikolić MG, Mančić L. Sonochemical synthesis of up-converting β-NaYF4: Yb, Er nanoparticles. in Programme and the Book of abstracts / Twenty-second Annual Conference YUCOMAT 2021 Herceg Novi, Montenegro, August 30 - September 3, 2021. 2021;:103-103.
https://hdl.handle.net/21.15107/rcub_dais_12076 .
Dinić, Ivana, Vuković, Marina, Jardim, Paula M., Nikolić, Marko G., Mančić, Lidija, "Sonochemical synthesis of up-converting β-NaYF4: Yb, Er nanoparticles" in Programme and the Book of abstracts / Twenty-second Annual Conference YUCOMAT 2021 Herceg Novi, Montenegro, August 30 - September 3, 2021 (2021):103-103,
https://hdl.handle.net/21.15107/rcub_dais_12076 .

Nonlinear laser scanning microscopy for imaging of the cells labeled by upconverting NaYF4:Yb,Er nanoparticles

Rabasović, Mihailo D.; Dinić, Ivana; Đukić Vuković, Aleksandra; Lazarević, Miloš; Nikolić, Marko G.; Krmpot, Aleksandar; Mančić, Lidija

(Belgrade : Serbian Ceramic Society, 2021)

TY  - CONF
AU  - Rabasović, Mihailo D.
AU  - Dinić, Ivana
AU  - Đukić Vuković, Aleksandra
AU  - Lazarević, Miloš
AU  - Nikolić, Marko G.
AU  - Krmpot, Aleksandar
AU  - Mančić, Lidija
PY  - 2021
UR  - https://dais.sanu.ac.rs/123456789/11912
AB  - The Nonlinear Laser Scanning Microscopy (NLSM) contributes to the cell labeling through addressing two main issues: photobleaching and phototoxicity. Moreover, an increase of the penetration depth and a reduction of background autofluorescence are achieved.We have used a multidisciplinary approach combining expertise in material science, nanoparticles synthesis and characterization, cancer cell and tissue labeling, and high resolution imaging, in order to accomplish in vitro imaging of the cancer cells. We have imaged the oral squamous carcinoma cells and human gingival cells. We have demonstrated that we are able to take high contrast images. We have shown position of the nanoparticles in cells, through colocalization of the cell auto-fluorescence and the nanoparticles up-conversion.We plan to improve our abilities through further optimization of the up-converting nanoparticles (smaller and brighter particles) and microscopy technique.
PB  - Belgrade : Serbian Ceramic Society
C3  - Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application IX : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 20-21. September 2021, 2021, 36-36
T1  - Nonlinear laser scanning microscopy for imaging of the cells labeled by upconverting NaYF4:Yb,Er nanoparticles
SP  - 35
EP  - 35
UR  - https://hdl.handle.net/21.15107/rcub_dais_11912
ER  - 
@conference{
author = "Rabasović, Mihailo D. and Dinić, Ivana and Đukić Vuković, Aleksandra and Lazarević, Miloš and Nikolić, Marko G. and Krmpot, Aleksandar and Mančić, Lidija",
year = "2021",
abstract = "The Nonlinear Laser Scanning Microscopy (NLSM) contributes to the cell labeling through addressing two main issues: photobleaching and phototoxicity. Moreover, an increase of the penetration depth and a reduction of background autofluorescence are achieved.We have used a multidisciplinary approach combining expertise in material science, nanoparticles synthesis and characterization, cancer cell and tissue labeling, and high resolution imaging, in order to accomplish in vitro imaging of the cancer cells. We have imaged the oral squamous carcinoma cells and human gingival cells. We have demonstrated that we are able to take high contrast images. We have shown position of the nanoparticles in cells, through colocalization of the cell auto-fluorescence and the nanoparticles up-conversion.We plan to improve our abilities through further optimization of the up-converting nanoparticles (smaller and brighter particles) and microscopy technique.",
publisher = "Belgrade : Serbian Ceramic Society",
journal = "Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application IX : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 20-21. September 2021, 2021, 36-36",
title = "Nonlinear laser scanning microscopy for imaging of the cells labeled by upconverting NaYF4:Yb,Er nanoparticles",
pages = "35-35",
url = "https://hdl.handle.net/21.15107/rcub_dais_11912"
}
Rabasović, M. D., Dinić, I., Đukić Vuković, A., Lazarević, M., Nikolić, M. G., Krmpot, A.,& Mančić, L.. (2021). Nonlinear laser scanning microscopy for imaging of the cells labeled by upconverting NaYF4:Yb,Er nanoparticles. in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application IX : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 20-21. September 2021, 2021, 36-36
Belgrade : Serbian Ceramic Society., 35-35.
https://hdl.handle.net/21.15107/rcub_dais_11912
Rabasović MD, Dinić I, Đukić Vuković A, Lazarević M, Nikolić MG, Krmpot A, Mančić L. Nonlinear laser scanning microscopy for imaging of the cells labeled by upconverting NaYF4:Yb,Er nanoparticles. in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application IX : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 20-21. September 2021, 2021, 36-36. 2021;:35-35.
https://hdl.handle.net/21.15107/rcub_dais_11912 .
Rabasović, Mihailo D., Dinić, Ivana, Đukić Vuković, Aleksandra, Lazarević, Miloš, Nikolić, Marko G., Krmpot, Aleksandar, Mančić, Lidija, "Nonlinear laser scanning microscopy for imaging of the cells labeled by upconverting NaYF4:Yb,Er nanoparticles" in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application IX : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 20-21. September 2021, 2021, 36-36 (2021):35-35,
https://hdl.handle.net/21.15107/rcub_dais_11912 .