Synthesis and characterization of novel functional polymers and polymeric nanocomposites

Link to this page

info:eu-repo/grantAgreement/MESTD/Basic Research (BR or ON)/172062/RS//

Synthesis and characterization of novel functional polymers and polymeric nanocomposites (en)
Синтеза и карактеризација нових функционалних полимера и полимерних нанокомпозита (sr)
Sinteza i karakterizacija novih funkcionalnih polimera i polimernih nanokompozita (sr_RS)
Authors

Publications

Preparation and characterization of poly(Urethane-siloxane)/titanium-dioxide nanocomposites

Stefanović, Ivan S.; Dostanić, Jasmina; Lončarević, Davor; Vasiljević Radović, Dana; Ostojić, Sanja; Marković, Smilja; Pergal, Marija V.

(Association of the Chemical Engineers of Serbia, 2019)

TY  - JOUR
AU  - Stefanović, Ivan S.
AU  - Dostanić, Jasmina
AU  - Lončarević, Davor
AU  - Vasiljević Radović, Dana
AU  - Ostojić, Sanja
AU  - Marković, Smilja
AU  - Pergal, Marija V.
PY  - 2019
UR  - https://dais.sanu.ac.rs/123456789/5761
AB  - This work is focused on preparation of poly(urethane-siloxane)/titanium-dioxide nanocomposites (PUSNs) with enhanced features. PUSNs were prepared by the in situ polymerization reaction using titanium-dioxide as a nano-filler in different amounts (1, 2, 3 and 5 wt.%) with respect to the poly(urethane-siloxane) (PUS) matrix. PUS copolymer was based on α,ω-dihy-droxy-ethoxypropyl-poly(dimethylsiloxane), 4,4’-methylenediphenyldiisocyanate and 1,4-bu-tanediole. In order to investigate the influence of TiO 2 content on the structure, UV resistance, thermal properties, hydrophobicity and morphology of the prepared PUSNs, FTIR spectroscopy, UV-Vis diffuse-reflectance spectroscopy, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), contact angle measurements, surface free energy (SFE) analysis, water absorption, scanning electron microscopy (SEM) and atomic force microscopy (AFM) were performed. The PUSNs showed excellent UV resistance, high hydrophobicity, low surface free energy and also higher thermal stability and rougher surface and cross-section relief structure as compared to the pure PUS copolymer. Based on the obtained results it can be concluded that prepared PUSNs could be potentially used as protective coatings. © 2019, Association of Chemists and Chemical Engineers of Serbia. All rights reserved.
PB  - Association of the Chemical Engineers of Serbia
T2  - Hemijska industrija
T1  - Preparation and characterization of poly(Urethane-siloxane)/titanium-dioxide nanocomposites
SP  - 13
EP  - 24
VL  - 73
IS  - 1
DO  - 10.2298/HEMIND180530002S
UR  - https://hdl.handle.net/21.15107/rcub_dais_5761
ER  - 
@article{
author = "Stefanović, Ivan S. and Dostanić, Jasmina and Lončarević, Davor and Vasiljević Radović, Dana and Ostojić, Sanja and Marković, Smilja and Pergal, Marija V.",
year = "2019",
abstract = "This work is focused on preparation of poly(urethane-siloxane)/titanium-dioxide nanocomposites (PUSNs) with enhanced features. PUSNs were prepared by the in situ polymerization reaction using titanium-dioxide as a nano-filler in different amounts (1, 2, 3 and 5 wt.%) with respect to the poly(urethane-siloxane) (PUS) matrix. PUS copolymer was based on α,ω-dihy-droxy-ethoxypropyl-poly(dimethylsiloxane), 4,4’-methylenediphenyldiisocyanate and 1,4-bu-tanediole. In order to investigate the influence of TiO 2 content on the structure, UV resistance, thermal properties, hydrophobicity and morphology of the prepared PUSNs, FTIR spectroscopy, UV-Vis diffuse-reflectance spectroscopy, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), contact angle measurements, surface free energy (SFE) analysis, water absorption, scanning electron microscopy (SEM) and atomic force microscopy (AFM) were performed. The PUSNs showed excellent UV resistance, high hydrophobicity, low surface free energy and also higher thermal stability and rougher surface and cross-section relief structure as compared to the pure PUS copolymer. Based on the obtained results it can be concluded that prepared PUSNs could be potentially used as protective coatings. © 2019, Association of Chemists and Chemical Engineers of Serbia. All rights reserved.",
publisher = "Association of the Chemical Engineers of Serbia",
journal = "Hemijska industrija",
title = "Preparation and characterization of poly(Urethane-siloxane)/titanium-dioxide nanocomposites",
pages = "13-24",
volume = "73",
number = "1",
doi = "10.2298/HEMIND180530002S",
url = "https://hdl.handle.net/21.15107/rcub_dais_5761"
}
Stefanović, I. S., Dostanić, J., Lončarević, D., Vasiljević Radović, D., Ostojić, S., Marković, S.,& Pergal, M. V.. (2019). Preparation and characterization of poly(Urethane-siloxane)/titanium-dioxide nanocomposites. in Hemijska industrija
Association of the Chemical Engineers of Serbia., 73(1), 13-24.
https://doi.org/10.2298/HEMIND180530002S
https://hdl.handle.net/21.15107/rcub_dais_5761
Stefanović IS, Dostanić J, Lončarević D, Vasiljević Radović D, Ostojić S, Marković S, Pergal MV. Preparation and characterization of poly(Urethane-siloxane)/titanium-dioxide nanocomposites. in Hemijska industrija. 2019;73(1):13-24.
doi:10.2298/HEMIND180530002S
https://hdl.handle.net/21.15107/rcub_dais_5761 .
Stefanović, Ivan S., Dostanić, Jasmina, Lončarević, Davor, Vasiljević Radović, Dana, Ostojić, Sanja, Marković, Smilja, Pergal, Marija V., "Preparation and characterization of poly(Urethane-siloxane)/titanium-dioxide nanocomposites" in Hemijska industrija, 73, no. 1 (2019):13-24,
https://doi.org/10.2298/HEMIND180530002S .,
https://hdl.handle.net/21.15107/rcub_dais_5761 .
7
4
8

Optimization of the preparation of novel polymer/clay nanocomposites

Marković, Bojana; Stefanović, Ivan S.; Popović, Aleksandar R.; Ignjatović, Nenad; Nastasović, Aleksandra

(Belgrade : Institute for Multidisciplinary Research, 2019)

TY  - CONF
AU  - Marković, Bojana
AU  - Stefanović, Ivan S.
AU  - Popović, Aleksandar R.
AU  - Ignjatović, Nenad
AU  - Nastasović, Aleksandra
PY  - 2019
UR  - https://dais.sanu.ac.rs/123456789/7007
AB  - Recent advances in material technologies have resulted in the preparation of novel polymer/clay composites with improved thermal, mechanical, optoelectronic/ magnetic properties and increased biodegradability [1]. In this study, six samples of poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) (PGME) nanocomposites with organically-modified montmorillonite clay Cloisite 30B® (C30B), were prepared via suspension copolymerization. In order to obtain nanocomposites with fine spherical beads of regular shape and satisfying thermal stability the optimization of the synthesis conditions was performed. Firstly, the influence of the poly(N-vinyl pyrrolidone) (PVP) quantity in the aqueous phase was varied (1, 3 and 5 wt.%) at a constant stirring rate of 250 rpm and constant clay content C30B (10 wt.%). In the second phase of the optimization of the preparation, samples with a constant composition of the composite reaction mixture (5 wt.% PVP and 10 wt.% C30B) at a stirring rate of 250, 325 and 400 rpm, were prepared. According to the obtained results, it was concluded that the optimal conditions for preparation of these composites are 5 wt.% of PVP and 400 rpm. The prepared nanocomposites were characterized with Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA) in air. The structure of the prepared nanocomposites was confirmed with FTIR spectroscopy. According to the obtained SEM microphotographs the fine spherical beads, with desired size and homogeneous morphology, were prepared. Furthermore, SEM analysis was also showed that clay nanoparticles are homogeneously dispersed both inside surface and cross-section area. The incorporation of C30B clay increased the thermal stability of the prepared polymer/clay nanocomposites in comparison to the pure PGME copolymer.
PB  - Belgrade : Institute for Multidisciplinary Research
C3  - Programme and the Book of Abstracts / 5th Conference of The Serbian Society for Ceramic Materials, 5CSCS-2019, June 11-13, 2019, Belgrade, Serbia
T1  - Optimization of the preparation of novel polymer/clay nanocomposites
SP  - 114
EP  - 114
UR  - https://hdl.handle.net/21.15107/rcub_dais_7007
ER  - 
@conference{
author = "Marković, Bojana and Stefanović, Ivan S. and Popović, Aleksandar R. and Ignjatović, Nenad and Nastasović, Aleksandra",
year = "2019",
abstract = "Recent advances in material technologies have resulted in the preparation of novel polymer/clay composites with improved thermal, mechanical, optoelectronic/ magnetic properties and increased biodegradability [1]. In this study, six samples of poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) (PGME) nanocomposites with organically-modified montmorillonite clay Cloisite 30B® (C30B), were prepared via suspension copolymerization. In order to obtain nanocomposites with fine spherical beads of regular shape and satisfying thermal stability the optimization of the synthesis conditions was performed. Firstly, the influence of the poly(N-vinyl pyrrolidone) (PVP) quantity in the aqueous phase was varied (1, 3 and 5 wt.%) at a constant stirring rate of 250 rpm and constant clay content C30B (10 wt.%). In the second phase of the optimization of the preparation, samples with a constant composition of the composite reaction mixture (5 wt.% PVP and 10 wt.% C30B) at a stirring rate of 250, 325 and 400 rpm, were prepared. According to the obtained results, it was concluded that the optimal conditions for preparation of these composites are 5 wt.% of PVP and 400 rpm. The prepared nanocomposites were characterized with Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA) in air. The structure of the prepared nanocomposites was confirmed with FTIR spectroscopy. According to the obtained SEM microphotographs the fine spherical beads, with desired size and homogeneous morphology, were prepared. Furthermore, SEM analysis was also showed that clay nanoparticles are homogeneously dispersed both inside surface and cross-section area. The incorporation of C30B clay increased the thermal stability of the prepared polymer/clay nanocomposites in comparison to the pure PGME copolymer.",
publisher = "Belgrade : Institute for Multidisciplinary Research",
journal = "Programme and the Book of Abstracts / 5th Conference of The Serbian Society for Ceramic Materials, 5CSCS-2019, June 11-13, 2019, Belgrade, Serbia",
title = "Optimization of the preparation of novel polymer/clay nanocomposites",
pages = "114-114",
url = "https://hdl.handle.net/21.15107/rcub_dais_7007"
}
Marković, B., Stefanović, I. S., Popović, A. R., Ignjatović, N.,& Nastasović, A.. (2019). Optimization of the preparation of novel polymer/clay nanocomposites. in Programme and the Book of Abstracts / 5th Conference of The Serbian Society for Ceramic Materials, 5CSCS-2019, June 11-13, 2019, Belgrade, Serbia
Belgrade : Institute for Multidisciplinary Research., 114-114.
https://hdl.handle.net/21.15107/rcub_dais_7007
Marković B, Stefanović IS, Popović AR, Ignjatović N, Nastasović A. Optimization of the preparation of novel polymer/clay nanocomposites. in Programme and the Book of Abstracts / 5th Conference of The Serbian Society for Ceramic Materials, 5CSCS-2019, June 11-13, 2019, Belgrade, Serbia. 2019;:114-114.
https://hdl.handle.net/21.15107/rcub_dais_7007 .
Marković, Bojana, Stefanović, Ivan S., Popović, Aleksandar R., Ignjatović, Nenad, Nastasović, Aleksandra, "Optimization of the preparation of novel polymer/clay nanocomposites" in Programme and the Book of Abstracts / 5th Conference of The Serbian Society for Ceramic Materials, 5CSCS-2019, June 11-13, 2019, Belgrade, Serbia (2019):114-114,
https://hdl.handle.net/21.15107/rcub_dais_7007 .

Novel membrane adsorbers incorporating functionalized polyglycidyl methacrylate

Radovanović, Filip; Nastasović, Aleksandra; Tomković, Tanja; Vasiljević Radović, Dana; Nešić, A.; Veličković, Sava; Onjia, Antonije

(Elsevier, 2014)

TY  - JOUR
AU  - Radovanović, Filip
AU  - Nastasović, Aleksandra
AU  - Tomković, Tanja
AU  - Vasiljević Radović, Dana
AU  - Nešić, A.
AU  - Veličković, Sava
AU  - Onjia, Antonije
PY  - 2014
UR  - https://dais.sanu.ac.rs/123456789/772
AB  - Asymmetric polyethersulfone membranes with submicron particles comprising crosslinked glycidyl methacrylate copolymer were prepared by a combination of a traditional immersion precipitation process for making membranes with photopolymerization and crosslinking of functional monomers included in the casting solution. As the concentration of polymerizable monomers increased the original macrovoid structure was replaced by a hybrid morphology with microglobules typical of macroporous methacrylate adsorbers embedded within microporous structure with no significant effects on water permeability. The epoxide groups present in glycidyl methacrylate copolymer were transformed into amine functionalities by ring opening under alkaline conditions. Permeation of Orange G solution at low transmembrane pressures was used to demonstrate suitability of these novel membranes for membrane adsorption.
PB  - Elsevier
T2  - Reactive and Functional Polymers
T1  - Novel membrane adsorbers incorporating functionalized polyglycidyl methacrylate
SP  - 1
EP  - 10
VL  - 77
DO  - 10.1016/j.reactfunctpolym.2014.01.007
UR  - https://hdl.handle.net/21.15107/rcub_dais_772
ER  - 
@article{
author = "Radovanović, Filip and Nastasović, Aleksandra and Tomković, Tanja and Vasiljević Radović, Dana and Nešić, A. and Veličković, Sava and Onjia, Antonije",
year = "2014",
abstract = "Asymmetric polyethersulfone membranes with submicron particles comprising crosslinked glycidyl methacrylate copolymer were prepared by a combination of a traditional immersion precipitation process for making membranes with photopolymerization and crosslinking of functional monomers included in the casting solution. As the concentration of polymerizable monomers increased the original macrovoid structure was replaced by a hybrid morphology with microglobules typical of macroporous methacrylate adsorbers embedded within microporous structure with no significant effects on water permeability. The epoxide groups present in glycidyl methacrylate copolymer were transformed into amine functionalities by ring opening under alkaline conditions. Permeation of Orange G solution at low transmembrane pressures was used to demonstrate suitability of these novel membranes for membrane adsorption.",
publisher = "Elsevier",
journal = "Reactive and Functional Polymers",
title = "Novel membrane adsorbers incorporating functionalized polyglycidyl methacrylate",
pages = "1-10",
volume = "77",
doi = "10.1016/j.reactfunctpolym.2014.01.007",
url = "https://hdl.handle.net/21.15107/rcub_dais_772"
}
Radovanović, F., Nastasović, A., Tomković, T., Vasiljević Radović, D., Nešić, A., Veličković, S.,& Onjia, A.. (2014). Novel membrane adsorbers incorporating functionalized polyglycidyl methacrylate. in Reactive and Functional Polymers
Elsevier., 77, 1-10.
https://doi.org/10.1016/j.reactfunctpolym.2014.01.007
https://hdl.handle.net/21.15107/rcub_dais_772
Radovanović F, Nastasović A, Tomković T, Vasiljević Radović D, Nešić A, Veličković S, Onjia A. Novel membrane adsorbers incorporating functionalized polyglycidyl methacrylate. in Reactive and Functional Polymers. 2014;77:1-10.
doi:10.1016/j.reactfunctpolym.2014.01.007
https://hdl.handle.net/21.15107/rcub_dais_772 .
Radovanović, Filip, Nastasović, Aleksandra, Tomković, Tanja, Vasiljević Radović, Dana, Nešić, A., Veličković, Sava, Onjia, Antonije, "Novel membrane adsorbers incorporating functionalized polyglycidyl methacrylate" in Reactive and Functional Polymers, 77 (2014):1-10,
https://doi.org/10.1016/j.reactfunctpolym.2014.01.007 .,
https://hdl.handle.net/21.15107/rcub_dais_772 .
11
11
12

Supplementary materials for the article: Radovanović, F., Nastasović, A., Tomković, T., Vasiljević-Radović, D., Nešić, A., Veličković, S., Onjia, A., 2014. Novel membrane adsorbers incorporating functionalized polyglycidyl methacrylate. Reactive and Functional Polymers 77, 1–10. https://doi.org/10.1016/j.reactfunctpolym.2014.01.007

Radovanović, Filip; Nastasović, Aleksandra; Tomković, Tanja; Vasiljević Radović, Dana; Nešić, A.; Veličković, Sava; Onjia, Antonije

(2014)

TY  - DATA
AU  - Radovanović, Filip
AU  - Nastasović, Aleksandra
AU  - Tomković, Tanja
AU  - Vasiljević Radović, Dana
AU  - Nešić, A.
AU  - Veličković, Sava
AU  - Onjia, Antonije
PY  - 2014
UR  - https://dais.sanu.ac.rs/123456789/4728
AB  - Asymmetric polyethersulfone membranes with submicron particles comprising crosslinked glycidyl methacrylate copolymer were prepared by a combination of a traditional immersion precipitation process for making membranes with photopolymerization and crosslinking of functional monomers included in the casting solution. As the concentration of polymerizable monomers increased the original macrovoid structure was replaced by a hybrid morphology with microglobules typical of macroporous methacrylate adsorbers embedded within microporous structure with no significant effects on water permeability. The epoxide groups present in glycidyl methacrylate copolymer were transformed into amine functionalities by ring opening under alkaline conditions. Permeation of Orange G solution at low transmembrane pressures was used to demonstrate suitability of these novel membranes for membrane adsorption.
T1  - Supplementary materials for the article: Radovanović, F., Nastasović, A., Tomković, T., Vasiljević-Radović, D., Nešić, A., Veličković, S., Onjia, A., 2014. Novel membrane adsorbers incorporating functionalized polyglycidyl methacrylate. Reactive and Functional Polymers 77, 1–10. https://doi.org/10.1016/j.reactfunctpolym.2014.01.007
UR  - https://hdl.handle.net/21.15107/rcub_dais_4728
ER  - 
@misc{
author = "Radovanović, Filip and Nastasović, Aleksandra and Tomković, Tanja and Vasiljević Radović, Dana and Nešić, A. and Veličković, Sava and Onjia, Antonije",
year = "2014",
abstract = "Asymmetric polyethersulfone membranes with submicron particles comprising crosslinked glycidyl methacrylate copolymer were prepared by a combination of a traditional immersion precipitation process for making membranes with photopolymerization and crosslinking of functional monomers included in the casting solution. As the concentration of polymerizable monomers increased the original macrovoid structure was replaced by a hybrid morphology with microglobules typical of macroporous methacrylate adsorbers embedded within microporous structure with no significant effects on water permeability. The epoxide groups present in glycidyl methacrylate copolymer were transformed into amine functionalities by ring opening under alkaline conditions. Permeation of Orange G solution at low transmembrane pressures was used to demonstrate suitability of these novel membranes for membrane adsorption.",
title = "Supplementary materials for the article: Radovanović, F., Nastasović, A., Tomković, T., Vasiljević-Radović, D., Nešić, A., Veličković, S., Onjia, A., 2014. Novel membrane adsorbers incorporating functionalized polyglycidyl methacrylate. Reactive and Functional Polymers 77, 1–10. https://doi.org/10.1016/j.reactfunctpolym.2014.01.007",
url = "https://hdl.handle.net/21.15107/rcub_dais_4728"
}
Radovanović, F., Nastasović, A., Tomković, T., Vasiljević Radović, D., Nešić, A., Veličković, S.,& Onjia, A.. (2014). Supplementary materials for the article: Radovanović, F., Nastasović, A., Tomković, T., Vasiljević-Radović, D., Nešić, A., Veličković, S., Onjia, A., 2014. Novel membrane adsorbers incorporating functionalized polyglycidyl methacrylate. Reactive and Functional Polymers 77, 1–10. https://doi.org/10.1016/j.reactfunctpolym.2014.01.007. .
https://hdl.handle.net/21.15107/rcub_dais_4728
Radovanović F, Nastasović A, Tomković T, Vasiljević Radović D, Nešić A, Veličković S, Onjia A. Supplementary materials for the article: Radovanović, F., Nastasović, A., Tomković, T., Vasiljević-Radović, D., Nešić, A., Veličković, S., Onjia, A., 2014. Novel membrane adsorbers incorporating functionalized polyglycidyl methacrylate. Reactive and Functional Polymers 77, 1–10. https://doi.org/10.1016/j.reactfunctpolym.2014.01.007. 2014;.
https://hdl.handle.net/21.15107/rcub_dais_4728 .
Radovanović, Filip, Nastasović, Aleksandra, Tomković, Tanja, Vasiljević Radović, Dana, Nešić, A., Veličković, Sava, Onjia, Antonije, "Supplementary materials for the article: Radovanović, F., Nastasović, A., Tomković, T., Vasiljević-Radović, D., Nešić, A., Veličković, S., Onjia, A., 2014. Novel membrane adsorbers incorporating functionalized polyglycidyl methacrylate. Reactive and Functional Polymers 77, 1–10. https://doi.org/10.1016/j.reactfunctpolym.2014.01.007" (2014),
https://hdl.handle.net/21.15107/rcub_dais_4728 .