HiSuperBat - High-Capacity Electrodes for Aqueous Rechargeable Multivalent-Ion Batteries and Supercapacitors: Next Step Towards a Hybrid Model

Link to this page

info:eu-repo/grantAgreement/ScienceFundRS/Promis/6062667/RS//

HiSuperBat - High-Capacity Electrodes for Aqueous Rechargeable Multivalent-Ion Batteries and Supercapacitors: Next Step Towards a Hybrid Model (en)
Authors

Publications

Recent developments of Na4M3(PO4)2(P2O7) as the cathode material for alkaline-ion rechargeable batteries: challenges and outlook

Gezović, Aleksandra; Vujković, Milica; Milović, Miloš; Grudić, Veselinka; Dominko, Robert; Mentus, Slavko

(Elsevier BV, 2021)

TY  - JOUR
AU  - Gezović, Aleksandra
AU  - Vujković, Milica
AU  - Milović, Miloš
AU  - Grudić, Veselinka
AU  - Dominko, Robert
AU  - Mentus, Slavko
PY  - 2021
UR  - https://dais.sanu.ac.rs/123456789/11632
AB  - Sodium ion batteries (SIB) present one of the most perspective post lithium technology and their progress strongly depends on the development of compounds having the structure which enables fast sodium insertion/deinsertion reactions. Polyanion compounds have been widely investigated as cathode materials for SIBs where they compete effectively to the usually used layered oxides. This survey is focused on the development of specific family of isostructural polyanion phases encompassed by the common chemical formula Na4M3(PO4)2(P2O7). The comprehensive retrospective of their synthesis procedures, the kinetics and mechanism of sodiation/desodiation reactions, based on both experimental and theoretical results, is provided. First, the review summarizes the structural properties of variety of Na4M3(PO4)2(P2O7) compounds in terms of its electrical, vibrational and surface properties. Then, the synthesis methods and sodium/lithium storage performance, of each type of Na4M3(PO4)2(P2O7) compounds, are chronologically presented and discussed. Finally, the strengths and weaknesses of these mixed polyanion cathodes are outlined, with the aim to explain some discrepancies and unclarified issues encountered in the literature. Besides, this survey will make room for future development. It can be very useful for the future design of high-performance mixed polyanionic compounds as cathodes for alkaline-ion rechargeable batteries.
PB  - Elsevier BV
T2  - Energy Storage Materials
T1  - Recent developments of Na4M3(PO4)2(P2O7) as the cathode material for alkaline-ion rechargeable batteries: challenges and outlook
SP  - 243
EP  - 273
VL  - 37
DO  - 10.1016/j.ensm.2021.02.011
UR  - https://hdl.handle.net/21.15107/rcub_dais_11632
ER  - 
@article{
author = "Gezović, Aleksandra and Vujković, Milica and Milović, Miloš and Grudić, Veselinka and Dominko, Robert and Mentus, Slavko",
year = "2021",
abstract = "Sodium ion batteries (SIB) present one of the most perspective post lithium technology and their progress strongly depends on the development of compounds having the structure which enables fast sodium insertion/deinsertion reactions. Polyanion compounds have been widely investigated as cathode materials for SIBs where they compete effectively to the usually used layered oxides. This survey is focused on the development of specific family of isostructural polyanion phases encompassed by the common chemical formula Na4M3(PO4)2(P2O7). The comprehensive retrospective of their synthesis procedures, the kinetics and mechanism of sodiation/desodiation reactions, based on both experimental and theoretical results, is provided. First, the review summarizes the structural properties of variety of Na4M3(PO4)2(P2O7) compounds in terms of its electrical, vibrational and surface properties. Then, the synthesis methods and sodium/lithium storage performance, of each type of Na4M3(PO4)2(P2O7) compounds, are chronologically presented and discussed. Finally, the strengths and weaknesses of these mixed polyanion cathodes are outlined, with the aim to explain some discrepancies and unclarified issues encountered in the literature. Besides, this survey will make room for future development. It can be very useful for the future design of high-performance mixed polyanionic compounds as cathodes for alkaline-ion rechargeable batteries.",
publisher = "Elsevier BV",
journal = "Energy Storage Materials",
title = "Recent developments of Na4M3(PO4)2(P2O7) as the cathode material for alkaline-ion rechargeable batteries: challenges and outlook",
pages = "243-273",
volume = "37",
doi = "10.1016/j.ensm.2021.02.011",
url = "https://hdl.handle.net/21.15107/rcub_dais_11632"
}
Gezović, A., Vujković, M., Milović, M., Grudić, V., Dominko, R.,& Mentus, S.. (2021). Recent developments of Na4M3(PO4)2(P2O7) as the cathode material for alkaline-ion rechargeable batteries: challenges and outlook. in Energy Storage Materials
Elsevier BV., 37, 243-273.
https://doi.org/10.1016/j.ensm.2021.02.011
https://hdl.handle.net/21.15107/rcub_dais_11632
Gezović A, Vujković M, Milović M, Grudić V, Dominko R, Mentus S. Recent developments of Na4M3(PO4)2(P2O7) as the cathode material for alkaline-ion rechargeable batteries: challenges and outlook. in Energy Storage Materials. 2021;37:243-273.
doi:10.1016/j.ensm.2021.02.011
https://hdl.handle.net/21.15107/rcub_dais_11632 .
Gezović, Aleksandra, Vujković, Milica, Milović, Miloš, Grudić, Veselinka, Dominko, Robert, Mentus, Slavko, "Recent developments of Na4M3(PO4)2(P2O7) as the cathode material for alkaline-ion rechargeable batteries: challenges and outlook" in Energy Storage Materials, 37 (2021):243-273,
https://doi.org/10.1016/j.ensm.2021.02.011 .,
https://hdl.handle.net/21.15107/rcub_dais_11632 .
11
6
8

Recent developments of Na4M3(PO4)2(P2O7) as the cathode material for alkaline-ion rechargeable batteries: challenges and outlook

Gezović, Aleksandra; Vujković, Milica; Milović, Miloš; Grudić, Veselinka; Dominko, Robert; Mentus, Slavko

(Elsevier BV, 2021)

TY  - JOUR
AU  - Gezović, Aleksandra
AU  - Vujković, Milica
AU  - Milović, Miloš
AU  - Grudić, Veselinka
AU  - Dominko, Robert
AU  - Mentus, Slavko
PY  - 2021
UR  - https://dais.sanu.ac.rs/123456789/11633
AB  - Sodium ion batteries (SIB) present one of the most perspective post lithium technology and their progress strongly depends on the development of compounds having the structure which enables fast sodium insertion/deinsertion reactions. Polyanion compounds have been widely investigated as cathode materials for SIBs where they compete effectively to the usually used layered oxides. This survey is focused on the development of specific family of isostructural polyanion phases encompassed by the common chemical formula Na4M3(PO4)2(P2O7). The comprehensive retrospective of their synthesis procedures, the kinetics and mechanism of sodiation/desodiation reactions, based on both experimental and theoretical results, is provided. First, the review summarizes the structural properties of variety of Na4M3(PO4)2(P2O7) compounds in terms of its electrical, vibrational and surface properties. Then, the synthesis methods and sodium/lithium storage performance, of each type of Na4M3(PO4)2(P2O7) compounds, are chronologically presented and discussed. Finally, the strengths and weaknesses of these mixed polyanion cathodes are outlined, with the aim to explain some discrepancies and unclarified issues encountered in the literature. Besides, this survey will make room for future development. It can be very useful for the future design of high-performance mixed polyanionic compounds as cathodes for alkaline-ion rechargeable batteries.
PB  - Elsevier BV
T2  - Energy Storage Materials
T1  - Recent developments of Na4M3(PO4)2(P2O7) as the cathode material for alkaline-ion rechargeable batteries: challenges and outlook
SP  - 243
EP  - 273
VL  - 37
DO  - 10.1016/j.ensm.2021.02.011
UR  - https://hdl.handle.net/21.15107/rcub_dais_11633
ER  - 
@article{
author = "Gezović, Aleksandra and Vujković, Milica and Milović, Miloš and Grudić, Veselinka and Dominko, Robert and Mentus, Slavko",
year = "2021",
abstract = "Sodium ion batteries (SIB) present one of the most perspective post lithium technology and their progress strongly depends on the development of compounds having the structure which enables fast sodium insertion/deinsertion reactions. Polyanion compounds have been widely investigated as cathode materials for SIBs where they compete effectively to the usually used layered oxides. This survey is focused on the development of specific family of isostructural polyanion phases encompassed by the common chemical formula Na4M3(PO4)2(P2O7). The comprehensive retrospective of their synthesis procedures, the kinetics and mechanism of sodiation/desodiation reactions, based on both experimental and theoretical results, is provided. First, the review summarizes the structural properties of variety of Na4M3(PO4)2(P2O7) compounds in terms of its electrical, vibrational and surface properties. Then, the synthesis methods and sodium/lithium storage performance, of each type of Na4M3(PO4)2(P2O7) compounds, are chronologically presented and discussed. Finally, the strengths and weaknesses of these mixed polyanion cathodes are outlined, with the aim to explain some discrepancies and unclarified issues encountered in the literature. Besides, this survey will make room for future development. It can be very useful for the future design of high-performance mixed polyanionic compounds as cathodes for alkaline-ion rechargeable batteries.",
publisher = "Elsevier BV",
journal = "Energy Storage Materials",
title = "Recent developments of Na4M3(PO4)2(P2O7) as the cathode material for alkaline-ion rechargeable batteries: challenges and outlook",
pages = "243-273",
volume = "37",
doi = "10.1016/j.ensm.2021.02.011",
url = "https://hdl.handle.net/21.15107/rcub_dais_11633"
}
Gezović, A., Vujković, M., Milović, M., Grudić, V., Dominko, R.,& Mentus, S.. (2021). Recent developments of Na4M3(PO4)2(P2O7) as the cathode material for alkaline-ion rechargeable batteries: challenges and outlook. in Energy Storage Materials
Elsevier BV., 37, 243-273.
https://doi.org/10.1016/j.ensm.2021.02.011
https://hdl.handle.net/21.15107/rcub_dais_11633
Gezović A, Vujković M, Milović M, Grudić V, Dominko R, Mentus S. Recent developments of Na4M3(PO4)2(P2O7) as the cathode material for alkaline-ion rechargeable batteries: challenges and outlook. in Energy Storage Materials. 2021;37:243-273.
doi:10.1016/j.ensm.2021.02.011
https://hdl.handle.net/21.15107/rcub_dais_11633 .
Gezović, Aleksandra, Vujković, Milica, Milović, Miloš, Grudić, Veselinka, Dominko, Robert, Mentus, Slavko, "Recent developments of Na4M3(PO4)2(P2O7) as the cathode material for alkaline-ion rechargeable batteries: challenges and outlook" in Energy Storage Materials, 37 (2021):243-273,
https://doi.org/10.1016/j.ensm.2021.02.011 .,
https://hdl.handle.net/21.15107/rcub_dais_11633 .
11
6
8

Electrochemical and structural study on cycling performance of γ-LiV2O5 cathode

Milović, Miloš; Vujković, Milica; Jugović, Dragana; Mitrić, Miodrag

(Elsevier BV, 2021)

TY  - JOUR
AU  - Milović, Miloš
AU  - Vujković, Milica
AU  - Jugović, Dragana
AU  - Mitrić, Miodrag
PY  - 2021
UR  - https://dais.sanu.ac.rs/123456789/11645
AB  - Electrochemical and structural properties of LiV2O5 cathode were investigated. Obtained by solid state reaction at high temperature the material crystallized as gamma polymorph phase, γ-LiV2O5. The gamma structure provides two crystallographic sites to accommodate lithium ions, Li1 and Li2 position. Lithium insertion at these two sites occurs at two respective voltages versus lithium metal: ~3.6 V (Li1) and ~2.4 V (Li2). Intercalation at Li1 position is reversible in both organic and aqueous electrolyte and provides stable cycling performance at the high voltage. On the contrary, sluggish insertion/removal of Li+ at Li2 sites causes unstable performance and significant storage capacity fade at lower voltages. Lithium diffusion 3d landscape was determined by bond valence calculations applied on the γ-LiV2O5 phase, as well as on the metastable phases of γ′-V2O5 and ζ-Li2V2O5 that exist at high and low voltages respectively. The model was proposed based on inactivity of Li2 position of the metastable ζ-Li2V2O5 phase which provides explanation for the observed storage capacity loss at low voltages.
PB  - Elsevier BV
T2  - Ceramics International
T1  - Electrochemical and structural study on cycling performance of γ-LiV2O5 cathode
SP  - 17077
EP  - 17083
VL  - 47
IS  - 12
DO  - 10.1016/j.ceramint.2021.03.016
UR  - https://hdl.handle.net/21.15107/rcub_dais_11645
ER  - 
@article{
author = "Milović, Miloš and Vujković, Milica and Jugović, Dragana and Mitrić, Miodrag",
year = "2021",
abstract = "Electrochemical and structural properties of LiV2O5 cathode were investigated. Obtained by solid state reaction at high temperature the material crystallized as gamma polymorph phase, γ-LiV2O5. The gamma structure provides two crystallographic sites to accommodate lithium ions, Li1 and Li2 position. Lithium insertion at these two sites occurs at two respective voltages versus lithium metal: ~3.6 V (Li1) and ~2.4 V (Li2). Intercalation at Li1 position is reversible in both organic and aqueous electrolyte and provides stable cycling performance at the high voltage. On the contrary, sluggish insertion/removal of Li+ at Li2 sites causes unstable performance and significant storage capacity fade at lower voltages. Lithium diffusion 3d landscape was determined by bond valence calculations applied on the γ-LiV2O5 phase, as well as on the metastable phases of γ′-V2O5 and ζ-Li2V2O5 that exist at high and low voltages respectively. The model was proposed based on inactivity of Li2 position of the metastable ζ-Li2V2O5 phase which provides explanation for the observed storage capacity loss at low voltages.",
publisher = "Elsevier BV",
journal = "Ceramics International",
title = "Electrochemical and structural study on cycling performance of γ-LiV2O5 cathode",
pages = "17077-17083",
volume = "47",
number = "12",
doi = "10.1016/j.ceramint.2021.03.016",
url = "https://hdl.handle.net/21.15107/rcub_dais_11645"
}
Milović, M., Vujković, M., Jugović, D.,& Mitrić, M.. (2021). Electrochemical and structural study on cycling performance of γ-LiV2O5 cathode. in Ceramics International
Elsevier BV., 47(12), 17077-17083.
https://doi.org/10.1016/j.ceramint.2021.03.016
https://hdl.handle.net/21.15107/rcub_dais_11645
Milović M, Vujković M, Jugović D, Mitrić M. Electrochemical and structural study on cycling performance of γ-LiV2O5 cathode. in Ceramics International. 2021;47(12):17077-17083.
doi:10.1016/j.ceramint.2021.03.016
https://hdl.handle.net/21.15107/rcub_dais_11645 .
Milović, Miloš, Vujković, Milica, Jugović, Dragana, Mitrić, Miodrag, "Electrochemical and structural study on cycling performance of γ-LiV2O5 cathode" in Ceramics International, 47, no. 12 (2021):17077-17083,
https://doi.org/10.1016/j.ceramint.2021.03.016 .,
https://hdl.handle.net/21.15107/rcub_dais_11645 .

Electrochemical and structural study on cycling performance of γ-LiV2O5 cathode

Milović, Miloš; Vujković, Milica; Jugović, Dragana; Mitrić, Miodrag

(Elsevier BV, 2021)

TY  - JOUR
AU  - Milović, Miloš
AU  - Vujković, Milica
AU  - Jugović, Dragana
AU  - Mitrić, Miodrag
PY  - 2021
UR  - https://dais.sanu.ac.rs/123456789/11655
AB  - Electrochemical and structural properties of LiV2O5 cathode were investigated. Obtained by solid state reaction at high temperature the material crystallized as gamma polymorph phase, γ-LiV2O5. The gamma structure provides two crystallographic sites to accommodate lithium ions, Li1 and Li2 position. Lithium insertion at these two sites occurs at two respective voltages versus lithium metal: ~3.6 V (Li1) and ~2.4 V (Li2). Intercalation at Li1 position is reversible in both organic and aqueous electrolyte and provides stable cycling performance at the high voltage. On the contrary, sluggish insertion/removal of Li+ at Li2 sites causes unstable performance and significant storage capacity fade at lower voltages. Lithium diffusion 3d landscape was determined by bond valence calculations applied on the γ-LiV2O5 phase, as well as on the metastable phases of γ′-V2O5 and ζ-Li2V2O5 that exist at high and low voltages respectively. The model was proposed based on inactivity of Li2 position of the metastable ζ-Li2V2O5 phase which provides explanation for the observed storage capacity loss at low voltages.
PB  - Elsevier BV
T2  - Ceramics International
T1  - Electrochemical and structural study on cycling performance of γ-LiV2O5 cathode
SP  - 17077
EP  - 17083
VL  - 47
IS  - 12
DO  - 10.1016/j.ceramint.2021.03.016
UR  - https://hdl.handle.net/21.15107/rcub_dais_11655
ER  - 
@article{
author = "Milović, Miloš and Vujković, Milica and Jugović, Dragana and Mitrić, Miodrag",
year = "2021",
abstract = "Electrochemical and structural properties of LiV2O5 cathode were investigated. Obtained by solid state reaction at high temperature the material crystallized as gamma polymorph phase, γ-LiV2O5. The gamma structure provides two crystallographic sites to accommodate lithium ions, Li1 and Li2 position. Lithium insertion at these two sites occurs at two respective voltages versus lithium metal: ~3.6 V (Li1) and ~2.4 V (Li2). Intercalation at Li1 position is reversible in both organic and aqueous electrolyte and provides stable cycling performance at the high voltage. On the contrary, sluggish insertion/removal of Li+ at Li2 sites causes unstable performance and significant storage capacity fade at lower voltages. Lithium diffusion 3d landscape was determined by bond valence calculations applied on the γ-LiV2O5 phase, as well as on the metastable phases of γ′-V2O5 and ζ-Li2V2O5 that exist at high and low voltages respectively. The model was proposed based on inactivity of Li2 position of the metastable ζ-Li2V2O5 phase which provides explanation for the observed storage capacity loss at low voltages.",
publisher = "Elsevier BV",
journal = "Ceramics International",
title = "Electrochemical and structural study on cycling performance of γ-LiV2O5 cathode",
pages = "17077-17083",
volume = "47",
number = "12",
doi = "10.1016/j.ceramint.2021.03.016",
url = "https://hdl.handle.net/21.15107/rcub_dais_11655"
}
Milović, M., Vujković, M., Jugović, D.,& Mitrić, M.. (2021). Electrochemical and structural study on cycling performance of γ-LiV2O5 cathode. in Ceramics International
Elsevier BV., 47(12), 17077-17083.
https://doi.org/10.1016/j.ceramint.2021.03.016
https://hdl.handle.net/21.15107/rcub_dais_11655
Milović M, Vujković M, Jugović D, Mitrić M. Electrochemical and structural study on cycling performance of γ-LiV2O5 cathode. in Ceramics International. 2021;47(12):17077-17083.
doi:10.1016/j.ceramint.2021.03.016
https://hdl.handle.net/21.15107/rcub_dais_11655 .
Milović, Miloš, Vujković, Milica, Jugović, Dragana, Mitrić, Miodrag, "Electrochemical and structural study on cycling performance of γ-LiV2O5 cathode" in Ceramics International, 47, no. 12 (2021):17077-17083,
https://doi.org/10.1016/j.ceramint.2021.03.016 .,
https://hdl.handle.net/21.15107/rcub_dais_11655 .

Layered CaV2O6 as promising electrode material for multivalent storage

Petrović, Tamara; Milović, Miloš; Bajuk Bogdanović, Danica; Vujković, Milica

(Belgrade : Institute of Technical Sciences of SASA, 2021)

TY  - CONF
AU  - Petrović, Tamara
AU  - Milović, Miloš
AU  - Bajuk Bogdanović, Danica
AU  - Vujković, Milica
PY  - 2021
UR  - https://dais.sanu.ac.rs/123456789/12275
AB  - While the world is facing a higher demand for lithium, its limited resources associated with the high price, are becoming problematic. Other crucial drawbacks of Li-ion batteries are their toxicity and safety concerns. Therefore, researchers are oriented towards development of non-Li batteries based on eco-friendly and earth-abundant materials to overcome drawbacks of Li-ion technology. Alternative abundant metals and their ions such as Mg and Ca could be a good choice for rechargeable batteries in terms of cost and eco-friendliness. Mg2+ and Ca2+ ions could transfer two electrons per redox process which theoretically has a positive effect on battery performance. The materials upon which multivalent ions will intercalate with fast diffusion rate are hard to find. Metal vanadium oxide (MxVyOz) materials become promising materials for rechargeable batteries, so herein, a standard sol-gel combustion route was used for the preparation of the CaV2O6 layered precursor. Two samples are synthesized from the vanadate precursor, the first when it was heated at 400 °C (CaVO) and the second when CaVO was integrated with 10 wt % of sucrose under thermal treatment at 400 °C, in Ar atmosphere (CaVO/C). Obtained CaVO and CaVO/C powders were thoroughly characterized by XRD, TG-DTA, FTIR, and Raman spectroscopy. The electrochemical performance of the obtained samples was evaluated for multivalent-ion storage in saturated aqueous electrolytic solutions of Mg (NO3)2 and Ca (NO3)2 by cyclic voltammetry and chronopotentiometry. For comparison, measurements were also done in saturated LiNO3. Results indicated that CaVO can store more Li+ ions than Mg2+ and Ca2+ ions, but CaVO in LiNO3 shows a substantial loss of capacity upon cycling, which is not observed in the case of Mg (NO3)2 and Ca (NO3)2. On the other hand, CaVO/C composite showed a significant improvement for Ca an Mg storage capacity, which exceeded capacity storage of Li+ ions. The high and stable discharge capacity of CaVO/C, amounting to 89.3 mA h g−1 at 0.5 A g-1, was obtained in Ca (NO3)2. Obtained results are promising and open novel directions regarding the use of CaV2O6 for multivalent rechargeable batteries, especially for Ca-ion batteries.
PB  - Belgrade : Institute of Technical Sciences of SASA
C3  - Program and the Book of abstracts / Nineteenth Young Researchers' Conference Materials Science and Engineering, December 1-3, 2021, Belgrade, Serbia
T1  - Layered CaV2O6 as promising electrode material for multivalent storage
SP  - 53
EP  - 53
UR  - https://hdl.handle.net/21.15107/rcub_dais_12275
ER  - 
@conference{
author = "Petrović, Tamara and Milović, Miloš and Bajuk Bogdanović, Danica and Vujković, Milica",
year = "2021",
abstract = "While the world is facing a higher demand for lithium, its limited resources associated with the high price, are becoming problematic. Other crucial drawbacks of Li-ion batteries are their toxicity and safety concerns. Therefore, researchers are oriented towards development of non-Li batteries based on eco-friendly and earth-abundant materials to overcome drawbacks of Li-ion technology. Alternative abundant metals and their ions such as Mg and Ca could be a good choice for rechargeable batteries in terms of cost and eco-friendliness. Mg2+ and Ca2+ ions could transfer two electrons per redox process which theoretically has a positive effect on battery performance. The materials upon which multivalent ions will intercalate with fast diffusion rate are hard to find. Metal vanadium oxide (MxVyOz) materials become promising materials for rechargeable batteries, so herein, a standard sol-gel combustion route was used for the preparation of the CaV2O6 layered precursor. Two samples are synthesized from the vanadate precursor, the first when it was heated at 400 °C (CaVO) and the second when CaVO was integrated with 10 wt % of sucrose under thermal treatment at 400 °C, in Ar atmosphere (CaVO/C). Obtained CaVO and CaVO/C powders were thoroughly characterized by XRD, TG-DTA, FTIR, and Raman spectroscopy. The electrochemical performance of the obtained samples was evaluated for multivalent-ion storage in saturated aqueous electrolytic solutions of Mg (NO3)2 and Ca (NO3)2 by cyclic voltammetry and chronopotentiometry. For comparison, measurements were also done in saturated LiNO3. Results indicated that CaVO can store more Li+ ions than Mg2+ and Ca2+ ions, but CaVO in LiNO3 shows a substantial loss of capacity upon cycling, which is not observed in the case of Mg (NO3)2 and Ca (NO3)2. On the other hand, CaVO/C composite showed a significant improvement for Ca an Mg storage capacity, which exceeded capacity storage of Li+ ions. The high and stable discharge capacity of CaVO/C, amounting to 89.3 mA h g−1 at 0.5 A g-1, was obtained in Ca (NO3)2. Obtained results are promising and open novel directions regarding the use of CaV2O6 for multivalent rechargeable batteries, especially for Ca-ion batteries.",
publisher = "Belgrade : Institute of Technical Sciences of SASA",
journal = "Program and the Book of abstracts / Nineteenth Young Researchers' Conference Materials Science and Engineering, December 1-3, 2021, Belgrade, Serbia",
title = "Layered CaV2O6 as promising electrode material for multivalent storage",
pages = "53-53",
url = "https://hdl.handle.net/21.15107/rcub_dais_12275"
}
Petrović, T., Milović, M., Bajuk Bogdanović, D.,& Vujković, M.. (2021). Layered CaV2O6 as promising electrode material for multivalent storage. in Program and the Book of abstracts / Nineteenth Young Researchers' Conference Materials Science and Engineering, December 1-3, 2021, Belgrade, Serbia
Belgrade : Institute of Technical Sciences of SASA., 53-53.
https://hdl.handle.net/21.15107/rcub_dais_12275
Petrović T, Milović M, Bajuk Bogdanović D, Vujković M. Layered CaV2O6 as promising electrode material for multivalent storage. in Program and the Book of abstracts / Nineteenth Young Researchers' Conference Materials Science and Engineering, December 1-3, 2021, Belgrade, Serbia. 2021;:53-53.
https://hdl.handle.net/21.15107/rcub_dais_12275 .
Petrović, Tamara, Milović, Miloš, Bajuk Bogdanović, Danica, Vujković, Milica, "Layered CaV2O6 as promising electrode material for multivalent storage" in Program and the Book of abstracts / Nineteenth Young Researchers' Conference Materials Science and Engineering, December 1-3, 2021, Belgrade, Serbia (2021):53-53,
https://hdl.handle.net/21.15107/rcub_dais_12275 .

Simply prepared Mg-V-O as potential cathode material for rechargeable aqueous magnesium ion batteries

Vasić, Milica M.; Milović, Miloš; Bajuk Bogdanović, Danica; Vujković, Milica

(Belgrade : Institute of Technical Sciences of SASA, 2021)

TY  - CONF
AU  - Vasić, Milica M.
AU  - Milović, Miloš
AU  - Bajuk Bogdanović, Danica
AU  - Vujković, Milica
PY  - 2021
UR  - https://dais.sanu.ac.rs/123456789/12278
AB  - Although today widely used in electronic devices and electric vehicles, lithium ion batteries encounter problem of future application, resulting from limited Li resources, relatively high costs and operational safety problems. Rechargeable magnesium batteries as a potential alternative to the Li-ion ones stand out because of their high theoretical specific capacity, high abundance of Mg resources, atmospheric stability, safety of handling, eco friendliness and low cost. Layered materials including oxides, sulphides and selenides are promising candidates for host materials for Mg2+ storage in rechargeable magnesium batteries. Slow migration of Mg2+ in the layered oxides, ascribed to the strong interaction between Mg and neighbouring O atoms, inspires researchers to look for the ways of improving their electrochemical performance. In this work, Mg-V-O material was synthesized by simple precipitation method, followed by thermal annealing. The obtained material is single-phase material consisted of MgV2O6 phase, according to the results of XRD, FTIR and Raman spectroscopy. Electrochemical test by cyclic voltammetry in aqueous solution revealed redox peaks corresponding to the insertion/deinsertion of Mg2+ ions into/from the material, but with poor current densities. In order to improve the electrochemical performance of the simply prepared Mg-V-O material, carbon was integrated with the Mg-V-O by sucrose-assisted thermal treatment. Although composed of several phases, the obtained Mg-V-O/C material exhibited around 40 times higher maximal specific current values of Mg2+ insertion/deinsertion than the Mg-V-O. Also, the electrochemical performance of the Mg-VO/ C for the insertion/deinsertion of Mg2+ ions was better than those of Al3+ and Li+ ions.
PB  - Belgrade : Institute of Technical Sciences of SASA
C3  - Program and the Book of abstracts / Nineteenth Young Researchers' Conference Materials Science and Engineering, December 1-3, 2021, Belgrade, Serbia
T1  - Simply prepared Mg-V-O as potential cathode material for rechargeable aqueous magnesium ion batteries
SP  - 52
EP  - 52
UR  - https://hdl.handle.net/21.15107/rcub_dais_12278
ER  - 
@conference{
author = "Vasić, Milica M. and Milović, Miloš and Bajuk Bogdanović, Danica and Vujković, Milica",
year = "2021",
abstract = "Although today widely used in electronic devices and electric vehicles, lithium ion batteries encounter problem of future application, resulting from limited Li resources, relatively high costs and operational safety problems. Rechargeable magnesium batteries as a potential alternative to the Li-ion ones stand out because of their high theoretical specific capacity, high abundance of Mg resources, atmospheric stability, safety of handling, eco friendliness and low cost. Layered materials including oxides, sulphides and selenides are promising candidates for host materials for Mg2+ storage in rechargeable magnesium batteries. Slow migration of Mg2+ in the layered oxides, ascribed to the strong interaction between Mg and neighbouring O atoms, inspires researchers to look for the ways of improving their electrochemical performance. In this work, Mg-V-O material was synthesized by simple precipitation method, followed by thermal annealing. The obtained material is single-phase material consisted of MgV2O6 phase, according to the results of XRD, FTIR and Raman spectroscopy. Electrochemical test by cyclic voltammetry in aqueous solution revealed redox peaks corresponding to the insertion/deinsertion of Mg2+ ions into/from the material, but with poor current densities. In order to improve the electrochemical performance of the simply prepared Mg-V-O material, carbon was integrated with the Mg-V-O by sucrose-assisted thermal treatment. Although composed of several phases, the obtained Mg-V-O/C material exhibited around 40 times higher maximal specific current values of Mg2+ insertion/deinsertion than the Mg-V-O. Also, the electrochemical performance of the Mg-VO/ C for the insertion/deinsertion of Mg2+ ions was better than those of Al3+ and Li+ ions.",
publisher = "Belgrade : Institute of Technical Sciences of SASA",
journal = "Program and the Book of abstracts / Nineteenth Young Researchers' Conference Materials Science and Engineering, December 1-3, 2021, Belgrade, Serbia",
title = "Simply prepared Mg-V-O as potential cathode material for rechargeable aqueous magnesium ion batteries",
pages = "52-52",
url = "https://hdl.handle.net/21.15107/rcub_dais_12278"
}
Vasić, M. M., Milović, M., Bajuk Bogdanović, D.,& Vujković, M.. (2021). Simply prepared Mg-V-O as potential cathode material for rechargeable aqueous magnesium ion batteries. in Program and the Book of abstracts / Nineteenth Young Researchers' Conference Materials Science and Engineering, December 1-3, 2021, Belgrade, Serbia
Belgrade : Institute of Technical Sciences of SASA., 52-52.
https://hdl.handle.net/21.15107/rcub_dais_12278
Vasić MM, Milović M, Bajuk Bogdanović D, Vujković M. Simply prepared Mg-V-O as potential cathode material for rechargeable aqueous magnesium ion batteries. in Program and the Book of abstracts / Nineteenth Young Researchers' Conference Materials Science and Engineering, December 1-3, 2021, Belgrade, Serbia. 2021;:52-52.
https://hdl.handle.net/21.15107/rcub_dais_12278 .
Vasić, Milica M., Milović, Miloš, Bajuk Bogdanović, Danica, Vujković, Milica, "Simply prepared Mg-V-O as potential cathode material for rechargeable aqueous magnesium ion batteries" in Program and the Book of abstracts / Nineteenth Young Researchers' Conference Materials Science and Engineering, December 1-3, 2021, Belgrade, Serbia (2021):52-52,
https://hdl.handle.net/21.15107/rcub_dais_12278 .

Supplementary information for the article: Milović Miloš, Vujković Milica, Jugović Dragana, Mitrić Miodrag, "Electrochemical and structural study on cycling performance of γ-LiV2O5 cathode" Ceramics International, 47, no. 12 (2021):17077-17083, https://doi.org/10.1016/j.ceramint.2021.03.016

Milović, Miloš; Vujković, Milica; Jugović, Dragana; Mitrić, Miodrag

(Elsevier BV, 2021)

TY  - DATA
AU  - Milović, Miloš
AU  - Vujković, Milica
AU  - Jugović, Dragana
AU  - Mitrić, Miodrag
PY  - 2021
UR  - https://dais.sanu.ac.rs/123456789/11646
AB  - Figure S1. Particle size distribution by number (blue) and by volume (red) of the as prepared powder of LiV2O5; 2. Ex-situ X-ray diffraction analysis; Figure S2. XRD patterns of the as prepared electrode before cycling (black line) and of electrodes in discharged state after cycling in aqueous (red) and in organic electrolyte (blue); a: whole pattern, b: 002 reflection
PB  - Elsevier BV
T2  - Ceramics International
T1  - Supplementary information for the article: Milović Miloš, Vujković Milica, Jugović Dragana, Mitrić Miodrag, "Electrochemical and structural study on cycling performance of γ-LiV2O5 cathode" Ceramics International, 47, no. 12 (2021):17077-17083, https://doi.org/10.1016/j.ceramint.2021.03.016
VL  - 47
IS  - 12
UR  - https://hdl.handle.net/21.15107/rcub_dais_11646
ER  - 
@misc{
author = "Milović, Miloš and Vujković, Milica and Jugović, Dragana and Mitrić, Miodrag",
year = "2021",
abstract = "Figure S1. Particle size distribution by number (blue) and by volume (red) of the as prepared powder of LiV2O5; 2. Ex-situ X-ray diffraction analysis; Figure S2. XRD patterns of the as prepared electrode before cycling (black line) and of electrodes in discharged state after cycling in aqueous (red) and in organic electrolyte (blue); a: whole pattern, b: 002 reflection",
publisher = "Elsevier BV",
journal = "Ceramics International",
title = "Supplementary information for the article: Milović Miloš, Vujković Milica, Jugović Dragana, Mitrić Miodrag, "Electrochemical and structural study on cycling performance of γ-LiV2O5 cathode" Ceramics International, 47, no. 12 (2021):17077-17083, https://doi.org/10.1016/j.ceramint.2021.03.016",
volume = "47",
number = "12",
url = "https://hdl.handle.net/21.15107/rcub_dais_11646"
}
Milović, M., Vujković, M., Jugović, D.,& Mitrić, M.. (2021). Supplementary information for the article: Milović Miloš, Vujković Milica, Jugović Dragana, Mitrić Miodrag, "Electrochemical and structural study on cycling performance of γ-LiV2O5 cathode" Ceramics International, 47, no. 12 (2021):17077-17083, https://doi.org/10.1016/j.ceramint.2021.03.016. in Ceramics International
Elsevier BV., 47(12).
https://hdl.handle.net/21.15107/rcub_dais_11646
Milović M, Vujković M, Jugović D, Mitrić M. Supplementary information for the article: Milović Miloš, Vujković Milica, Jugović Dragana, Mitrić Miodrag, "Electrochemical and structural study on cycling performance of γ-LiV2O5 cathode" Ceramics International, 47, no. 12 (2021):17077-17083, https://doi.org/10.1016/j.ceramint.2021.03.016. in Ceramics International. 2021;47(12).
https://hdl.handle.net/21.15107/rcub_dais_11646 .
Milović, Miloš, Vujković, Milica, Jugović, Dragana, Mitrić, Miodrag, "Supplementary information for the article: Milović Miloš, Vujković Milica, Jugović Dragana, Mitrić Miodrag, "Electrochemical and structural study on cycling performance of γ-LiV2O5 cathode" Ceramics International, 47, no. 12 (2021):17077-17083, https://doi.org/10.1016/j.ceramint.2021.03.016" in Ceramics International, 47, no. 12 (2021),
https://hdl.handle.net/21.15107/rcub_dais_11646 .

Supplementary information for the article: Gezović Aleksandra, Vujković Milica, Milović Miloš, Grudić Veselinka, Dominko Robert, Mentus Slavko, "Recent developments of Na4M3(PO4)2(P2O7) as the cathode material for alkaline-ion rechargeable batteries: challenges and outlook" Energy Storage Materials, 37 (2021):243-273, https://doi.org/10.1016/j.ensm.2021.02.011

Gezović, Aleksandra; Vujković, Milica; Milović, Miloš; Grudić, Veselinka; Dominko, Robert; Mentus, Slavko

(Elsevier BV, 2021)

TY  - DATA
AU  - Gezović, Aleksandra
AU  - Vujković, Milica
AU  - Milović, Miloš
AU  - Grudić, Veselinka
AU  - Dominko, Robert
AU  - Mentus, Slavko
PY  - 2021
UR  - https://dais.sanu.ac.rs/123456789/11634
AB  - Sodium ion batteries (SIB) present one of the most perspective post lithium technology and their progress strongly depends on the development of compounds having the structure which enables fast sodium insertion/deinsertion reactions. Polyanion compounds have been widely investigated as cathode materials for SIBs where they compete effectively to the usually used layered oxides. This survey is focused on the development of specific family of isostructural polyanion phases encompassed by the common chemical formula Na4M3(PO4)2(P2O7). The comprehensive retrospective of their synthesis procedures, the kinetics and mechanism of sodiation/desodiation reactions, based on both experimental and theoretical results, is provided. First, the review summarizes the structural properties of variety of Na4M3(PO4)2(P2O7) compounds in terms of its electrical, vibrational and surface properties. Then, the synthesis methods and sodium/lithium storage performance, of each type of Na4M3(PO4)2(P2O7) compounds, are chronologically presented and discussed. Finally, the strengths and weaknesses of these mixed polyanion cathodes are outlined, with the aim to explain some discrepancies and unclarified issues encountered in the literature. Besides, this survey will make room for future development. It can be very useful for the future design of high-performance mixed polyanionic compounds as cathodes for alkaline-ion rechargeable batteries.
PB  - Elsevier BV
T2  - Energy Storage Materials
T1  - Supplementary information for the article: Gezović Aleksandra, Vujković Milica, Milović Miloš, Grudić Veselinka, Dominko Robert, Mentus Slavko, "Recent developments of Na4M3(PO4)2(P2O7) as the cathode material for alkaline-ion rechargeable batteries: challenges and outlook" Energy Storage Materials, 37 (2021):243-273, https://doi.org/10.1016/j.ensm.2021.02.011
VL  - 37
UR  - https://hdl.handle.net/21.15107/rcub_dais_11634
ER  - 
@misc{
author = "Gezović, Aleksandra and Vujković, Milica and Milović, Miloš and Grudić, Veselinka and Dominko, Robert and Mentus, Slavko",
year = "2021",
abstract = "Sodium ion batteries (SIB) present one of the most perspective post lithium technology and their progress strongly depends on the development of compounds having the structure which enables fast sodium insertion/deinsertion reactions. Polyanion compounds have been widely investigated as cathode materials for SIBs where they compete effectively to the usually used layered oxides. This survey is focused on the development of specific family of isostructural polyanion phases encompassed by the common chemical formula Na4M3(PO4)2(P2O7). The comprehensive retrospective of their synthesis procedures, the kinetics and mechanism of sodiation/desodiation reactions, based on both experimental and theoretical results, is provided. First, the review summarizes the structural properties of variety of Na4M3(PO4)2(P2O7) compounds in terms of its electrical, vibrational and surface properties. Then, the synthesis methods and sodium/lithium storage performance, of each type of Na4M3(PO4)2(P2O7) compounds, are chronologically presented and discussed. Finally, the strengths and weaknesses of these mixed polyanion cathodes are outlined, with the aim to explain some discrepancies and unclarified issues encountered in the literature. Besides, this survey will make room for future development. It can be very useful for the future design of high-performance mixed polyanionic compounds as cathodes for alkaline-ion rechargeable batteries.",
publisher = "Elsevier BV",
journal = "Energy Storage Materials",
title = "Supplementary information for the article: Gezović Aleksandra, Vujković Milica, Milović Miloš, Grudić Veselinka, Dominko Robert, Mentus Slavko, "Recent developments of Na4M3(PO4)2(P2O7) as the cathode material for alkaline-ion rechargeable batteries: challenges and outlook" Energy Storage Materials, 37 (2021):243-273, https://doi.org/10.1016/j.ensm.2021.02.011",
volume = "37",
url = "https://hdl.handle.net/21.15107/rcub_dais_11634"
}
Gezović, A., Vujković, M., Milović, M., Grudić, V., Dominko, R.,& Mentus, S.. (2021). Supplementary information for the article: Gezović Aleksandra, Vujković Milica, Milović Miloš, Grudić Veselinka, Dominko Robert, Mentus Slavko, "Recent developments of Na4M3(PO4)2(P2O7) as the cathode material for alkaline-ion rechargeable batteries: challenges and outlook" Energy Storage Materials, 37 (2021):243-273, https://doi.org/10.1016/j.ensm.2021.02.011. in Energy Storage Materials
Elsevier BV., 37.
https://hdl.handle.net/21.15107/rcub_dais_11634
Gezović A, Vujković M, Milović M, Grudić V, Dominko R, Mentus S. Supplementary information for the article: Gezović Aleksandra, Vujković Milica, Milović Miloš, Grudić Veselinka, Dominko Robert, Mentus Slavko, "Recent developments of Na4M3(PO4)2(P2O7) as the cathode material for alkaline-ion rechargeable batteries: challenges and outlook" Energy Storage Materials, 37 (2021):243-273, https://doi.org/10.1016/j.ensm.2021.02.011. in Energy Storage Materials. 2021;37.
https://hdl.handle.net/21.15107/rcub_dais_11634 .
Gezović, Aleksandra, Vujković, Milica, Milović, Miloš, Grudić, Veselinka, Dominko, Robert, Mentus, Slavko, "Supplementary information for the article: Gezović Aleksandra, Vujković Milica, Milović Miloš, Grudić Veselinka, Dominko Robert, Mentus Slavko, "Recent developments of Na4M3(PO4)2(P2O7) as the cathode material for alkaline-ion rechargeable batteries: challenges and outlook" Energy Storage Materials, 37 (2021):243-273, https://doi.org/10.1016/j.ensm.2021.02.011" in Energy Storage Materials, 37 (2021),
https://hdl.handle.net/21.15107/rcub_dais_11634 .