European Science Foundation COST Action CA15114

Link to this page

European Science Foundation COST Action CA15114

Authors

Publications

Supplementary information for the article: Filipović, N., Veselinović, L., Ražić, S., Jeremić, S., Filipič, M., Žegura, B., Tomić, S., Čolić, M., Stevanović, M., 2019. Poly (ε-caprolactone) microspheres for prolonged release of selenium nanoparticles. Materials Science and Engineering C 96, 776–789. https://doi.org/10.1016/j.msec.2018.11.073

Filipović, Nenad; Veselinović, Ljiljana; Ražić, Slavica; Jeremić, Sanja; Filipič, Metka; Žegura, Bojana; Tomić, Sergej; Čolić, Miodrag; Stevanović, Magdalena

(2019)

TY  - DATA
AU  - Filipović, Nenad
AU  - Veselinović, Ljiljana
AU  - Ražić, Slavica
AU  - Jeremić, Sanja
AU  - Filipič, Metka
AU  - Žegura, Bojana
AU  - Tomić, Sergej
AU  - Čolić, Miodrag
AU  - Stevanović, Magdalena
PY  - 2019
UR  - https://dais.sanu.ac.rs/123456789/5972
AB  - 1. Experimental details for ICP-OES measurements; 1.1. Instrumental and operating conditions; 1.2.Solutions and Reagents; 1.3. Microwave assisted acid digestion; 1.4. Calibration curve 2. Experimental details for biocompatibility investigations of PCL/SeNPs; 2.1. Cell culture; 2.2.Determining citotoxicity of samples - MTT assay; 2.3. Determination of intracellular reactive oxygen species formation – DCFH-DA assay; 2.4. DNA damage (comet assay) Figure 1. SEM image of blank PCL microspheres Figure 2. XRD pattern of commercial PGA used in experiments Figure 3. Interaction with PCL/SeNPs in vivo by infiltrating cells. PCL/SeNPs (4mg/animal) were injected into sterile polyvinyl sponges implanted subcutaneously. The infiltrating cells were collected from the sponges after 3h and stained to anti-CD45/IgG Alexa 488 (Green) and Syto59 nuclear stain. PCL/SeNPs were detected as brightly scattering particles sized about 1-4 μm after 546nm laser excitation either intracellularly within granulocytes (A) or extracellularly (B). Note that some cells expressed strongly CD45 on the membrane and the cytoplasm, whereas others displayed a weak membrane expression and a strong expression in the granular ER at the nucleus level. Table 1. Melting temperatures Tm and corresponding enthalpies (heat) of fusion ΔHf of PCL/SeNPs samples taken after different time from different degradation mediums Table 2. Melting temperatures and corresponding enthalpies of PCL/SeNPs samples taken after different degradation periods from P. aeruginosa CFE medium
T2  - Materials Science and Engineering C
T1  - Supplementary information for the article: Filipović, N., Veselinović, L., Ražić, S., Jeremić, S., Filipič, M., Žegura, B., Tomić, S., Čolić, M., Stevanović, M., 2019. Poly (ε-caprolactone) microspheres for prolonged release of selenium nanoparticles. Materials Science and Engineering C 96, 776–789. https://doi.org/10.1016/j.msec.2018.11.073
UR  - https://hdl.handle.net/21.15107/rcub_dais_5972
ER  - 
@misc{
author = "Filipović, Nenad and Veselinović, Ljiljana and Ražić, Slavica and Jeremić, Sanja and Filipič, Metka and Žegura, Bojana and Tomić, Sergej and Čolić, Miodrag and Stevanović, Magdalena",
year = "2019",
abstract = "1. Experimental details for ICP-OES measurements; 1.1. Instrumental and operating conditions; 1.2.Solutions and Reagents; 1.3. Microwave assisted acid digestion; 1.4. Calibration curve 2. Experimental details for biocompatibility investigations of PCL/SeNPs; 2.1. Cell culture; 2.2.Determining citotoxicity of samples - MTT assay; 2.3. Determination of intracellular reactive oxygen species formation – DCFH-DA assay; 2.4. DNA damage (comet assay) Figure 1. SEM image of blank PCL microspheres Figure 2. XRD pattern of commercial PGA used in experiments Figure 3. Interaction with PCL/SeNPs in vivo by infiltrating cells. PCL/SeNPs (4mg/animal) were injected into sterile polyvinyl sponges implanted subcutaneously. The infiltrating cells were collected from the sponges after 3h and stained to anti-CD45/IgG Alexa 488 (Green) and Syto59 nuclear stain. PCL/SeNPs were detected as brightly scattering particles sized about 1-4 μm after 546nm laser excitation either intracellularly within granulocytes (A) or extracellularly (B). Note that some cells expressed strongly CD45 on the membrane and the cytoplasm, whereas others displayed a weak membrane expression and a strong expression in the granular ER at the nucleus level. Table 1. Melting temperatures Tm and corresponding enthalpies (heat) of fusion ΔHf of PCL/SeNPs samples taken after different time from different degradation mediums Table 2. Melting temperatures and corresponding enthalpies of PCL/SeNPs samples taken after different degradation periods from P. aeruginosa CFE medium",
journal = "Materials Science and Engineering C",
title = "Supplementary information for the article: Filipović, N., Veselinović, L., Ražić, S., Jeremić, S., Filipič, M., Žegura, B., Tomić, S., Čolić, M., Stevanović, M., 2019. Poly (ε-caprolactone) microspheres for prolonged release of selenium nanoparticles. Materials Science and Engineering C 96, 776–789. https://doi.org/10.1016/j.msec.2018.11.073",
url = "https://hdl.handle.net/21.15107/rcub_dais_5972"
}
Filipović, N., Veselinović, L., Ražić, S., Jeremić, S., Filipič, M., Žegura, B., Tomić, S., Čolić, M.,& Stevanović, M.. (2019). Supplementary information for the article: Filipović, N., Veselinović, L., Ražić, S., Jeremić, S., Filipič, M., Žegura, B., Tomić, S., Čolić, M., Stevanović, M., 2019. Poly (ε-caprolactone) microspheres for prolonged release of selenium nanoparticles. Materials Science and Engineering C 96, 776–789. https://doi.org/10.1016/j.msec.2018.11.073. in Materials Science and Engineering C.
https://hdl.handle.net/21.15107/rcub_dais_5972
Filipović N, Veselinović L, Ražić S, Jeremić S, Filipič M, Žegura B, Tomić S, Čolić M, Stevanović M. Supplementary information for the article: Filipović, N., Veselinović, L., Ražić, S., Jeremić, S., Filipič, M., Žegura, B., Tomić, S., Čolić, M., Stevanović, M., 2019. Poly (ε-caprolactone) microspheres for prolonged release of selenium nanoparticles. Materials Science and Engineering C 96, 776–789. https://doi.org/10.1016/j.msec.2018.11.073. in Materials Science and Engineering C. 2019;.
https://hdl.handle.net/21.15107/rcub_dais_5972 .
Filipović, Nenad, Veselinović, Ljiljana, Ražić, Slavica, Jeremić, Sanja, Filipič, Metka, Žegura, Bojana, Tomić, Sergej, Čolić, Miodrag, Stevanović, Magdalena, "Supplementary information for the article: Filipović, N., Veselinović, L., Ražić, S., Jeremić, S., Filipič, M., Žegura, B., Tomić, S., Čolić, M., Stevanović, M., 2019. Poly (ε-caprolactone) microspheres for prolonged release of selenium nanoparticles. Materials Science and Engineering C 96, 776–789. https://doi.org/10.1016/j.msec.2018.11.073" in Materials Science and Engineering C (2019),
https://hdl.handle.net/21.15107/rcub_dais_5972 .

Poly (ε-caprolactone) microspheres for prolonged release of selenium nanoparticles

Filipović, Nenad; Veselinović, Ljiljana; Ražić, Slavica; Jeremić, Sanja; Filipič, Metka; Žegura, Bojana; Tomić, Sergej; Čolić, Miodrag; Stevanović, Magdalena

(Elsevier, 2019)

TY  - JOUR
AU  - Filipović, Nenad
AU  - Veselinović, Ljiljana
AU  - Ražić, Slavica
AU  - Jeremić, Sanja
AU  - Filipič, Metka
AU  - Žegura, Bojana
AU  - Tomić, Sergej
AU  - Čolić, Miodrag
AU  - Stevanović, Magdalena
PY  - 2019
UR  - https://dais.sanu.ac.rs/123456789/4600
AB  - Poly (ε-caprolactone) (PCL) microspheres as a carrier for sustained release of antibacterial agent, selenium nanoparticles (SeNPs), were developed. The obtained PCL/SeNPs microspheres were in the range 1–4 μm with the encapsulation efficiency of about 90%. The degradation process and release behavior of SeNPs from PCL microspheres were investigated in five different degradation media: phosphate buffer solution (PBS), a solution of lipase isolated from the porcine pancreas in PBS, 0.1 M hydrochloric acid (HCl), Pseudomonas aeruginosa PAO1 cell-free extract in PBS and implant fluid (exudate) from the subcutaneously implanted sterile polyvinyl sponges which induce a foreign-body inflammatory reaction. The samples were thoroughly characterized by SEM, TEM, FTIR, XRD, PSA, DSC, confocal microscopy, and ICP-OES techniques. Under physiological conditions at neutral pH, a very slow release of SeNPs occurred (3 and 8% in the case of PBS or PBS + lipase, respectively and after 660 days), while in the acidic environment their presence was not detected. On the other hand, the release in the medium with bacterial extract was much more pronounced, even after 24 h (13%). After 7 days, the concentration of SeNPs reached a maximum of around 30%. Also, 37% of SeNPs have been released after 11 days of incubation of PCL/SeNPs in the implant exudate. These results suggest that the release of SeNPs from PCL was triggered by Pseudomonas aeruginosa PAO1 bacterium as well as by foreign body inflammatory reaction to implant. Furthermore, PCL/SeNPs microspheres were investigated in terms of their biocompatibility. For this purpose, cytotoxicity, the formation of reactive oxygen species (ROS), and genotoxicity were evaluated on HepG2 cell line. The interaction of PCL/SeNPs with phagocytic cell line (Raw 264.7 macrophages) was monitored as well. It was found that the microspheres in investigated concentration range had no acute cytotoxic effects. Finally, SeNPs, as well as PCL/SeNPs, showed a considerable antibacterial activity against Gram-positive bacteria: Staphylococcus aureus (ATCC 25923) and Staphylococcus epidermidis (ATCC 1228). These results suggest that PCL/SeNPs-based system could be an attractive platform for a prolonged prevention of infections accompanying implants. © 2018 Elsevier B.V.
PB  - Elsevier
T2  - Materials Science and Engineering C
T1  - Poly (ε-caprolactone) microspheres for prolonged release of selenium nanoparticles
SP  - 776
EP  - 789
VL  - 96
DO  - 10.1016/j.msec.2018.11.073
UR  - https://hdl.handle.net/21.15107/rcub_dais_4600
ER  - 
@article{
author = "Filipović, Nenad and Veselinović, Ljiljana and Ražić, Slavica and Jeremić, Sanja and Filipič, Metka and Žegura, Bojana and Tomić, Sergej and Čolić, Miodrag and Stevanović, Magdalena",
year = "2019",
abstract = "Poly (ε-caprolactone) (PCL) microspheres as a carrier for sustained release of antibacterial agent, selenium nanoparticles (SeNPs), were developed. The obtained PCL/SeNPs microspheres were in the range 1–4 μm with the encapsulation efficiency of about 90%. The degradation process and release behavior of SeNPs from PCL microspheres were investigated in five different degradation media: phosphate buffer solution (PBS), a solution of lipase isolated from the porcine pancreas in PBS, 0.1 M hydrochloric acid (HCl), Pseudomonas aeruginosa PAO1 cell-free extract in PBS and implant fluid (exudate) from the subcutaneously implanted sterile polyvinyl sponges which induce a foreign-body inflammatory reaction. The samples were thoroughly characterized by SEM, TEM, FTIR, XRD, PSA, DSC, confocal microscopy, and ICP-OES techniques. Under physiological conditions at neutral pH, a very slow release of SeNPs occurred (3 and 8% in the case of PBS or PBS + lipase, respectively and after 660 days), while in the acidic environment their presence was not detected. On the other hand, the release in the medium with bacterial extract was much more pronounced, even after 24 h (13%). After 7 days, the concentration of SeNPs reached a maximum of around 30%. Also, 37% of SeNPs have been released after 11 days of incubation of PCL/SeNPs in the implant exudate. These results suggest that the release of SeNPs from PCL was triggered by Pseudomonas aeruginosa PAO1 bacterium as well as by foreign body inflammatory reaction to implant. Furthermore, PCL/SeNPs microspheres were investigated in terms of their biocompatibility. For this purpose, cytotoxicity, the formation of reactive oxygen species (ROS), and genotoxicity were evaluated on HepG2 cell line. The interaction of PCL/SeNPs with phagocytic cell line (Raw 264.7 macrophages) was monitored as well. It was found that the microspheres in investigated concentration range had no acute cytotoxic effects. Finally, SeNPs, as well as PCL/SeNPs, showed a considerable antibacterial activity against Gram-positive bacteria: Staphylococcus aureus (ATCC 25923) and Staphylococcus epidermidis (ATCC 1228). These results suggest that PCL/SeNPs-based system could be an attractive platform for a prolonged prevention of infections accompanying implants. © 2018 Elsevier B.V.",
publisher = "Elsevier",
journal = "Materials Science and Engineering C",
title = "Poly (ε-caprolactone) microspheres for prolonged release of selenium nanoparticles",
pages = "776-789",
volume = "96",
doi = "10.1016/j.msec.2018.11.073",
url = "https://hdl.handle.net/21.15107/rcub_dais_4600"
}
Filipović, N., Veselinović, L., Ražić, S., Jeremić, S., Filipič, M., Žegura, B., Tomić, S., Čolić, M.,& Stevanović, M.. (2019). Poly (ε-caprolactone) microspheres for prolonged release of selenium nanoparticles. in Materials Science and Engineering C
Elsevier., 96, 776-789.
https://doi.org/10.1016/j.msec.2018.11.073
https://hdl.handle.net/21.15107/rcub_dais_4600
Filipović N, Veselinović L, Ražić S, Jeremić S, Filipič M, Žegura B, Tomić S, Čolić M, Stevanović M. Poly (ε-caprolactone) microspheres for prolonged release of selenium nanoparticles. in Materials Science and Engineering C. 2019;96:776-789.
doi:10.1016/j.msec.2018.11.073
https://hdl.handle.net/21.15107/rcub_dais_4600 .
Filipović, Nenad, Veselinović, Ljiljana, Ražić, Slavica, Jeremić, Sanja, Filipič, Metka, Žegura, Bojana, Tomić, Sergej, Čolić, Miodrag, Stevanović, Magdalena, "Poly (ε-caprolactone) microspheres for prolonged release of selenium nanoparticles" in Materials Science and Engineering C, 96 (2019):776-789,
https://doi.org/10.1016/j.msec.2018.11.073 .,
https://hdl.handle.net/21.15107/rcub_dais_4600 .
1
16
13
16

Poly (ε-caprolactone) microspheres for prolonged release of selenium nanoparticles

Filipović, Nenad; Veselinović, Ljiljana; Ražić, Slavica; Jeremić, Sanja; Filipič, Metka; Žegura, Bojana; Tomić, Sergej; Čolić, Miodrag; Stevanović, Magdalena

(Elsevier, 2019)

TY  - JOUR
AU  - Filipović, Nenad
AU  - Veselinović, Ljiljana
AU  - Ražić, Slavica
AU  - Jeremić, Sanja
AU  - Filipič, Metka
AU  - Žegura, Bojana
AU  - Tomić, Sergej
AU  - Čolić, Miodrag
AU  - Stevanović, Magdalena
PY  - 2019
UR  - https://dais.sanu.ac.rs/123456789/4590
AB  - Poly (ε-caprolactone) (PCL) microspheres as a carrier for sustained release of antibacterial agent, selenium nanoparticles (SeNPs), were developed. The obtained PCL/SeNPs microspheres were in the range 1–4 μm with the encapsulation efficiency of about 90%. The degradation process and release behavior of SeNPs from PCL microspheres were investigated in five different degradation media: phosphate buffer solution (PBS), a solution of lipase isolated from the porcine pancreas in PBS, 0.1 M hydrochloric acid (HCl), Pseudomonas aeruginosa PAO1 cell-free extract in PBS and implant fluid (exudate) from the subcutaneously implanted sterile polyvinyl sponges which induce a foreign-body inflammatory reaction. The samples were thoroughly characterized by SEM, TEM, FTIR, XRD, PSA, DSC, confocal microscopy, and ICP-OES techniques. Under physiological conditions at neutral pH, a very slow release of SeNPs occurred (3 and 8% in the case of PBS or PBS + lipase, respectively and after 660 days), while in the acidic environment their presence was not detected. On the other hand, the release in the medium with bacterial extract was much more pronounced, even after 24 h (13%). After 7 days, the concentration of SeNPs reached a maximum of around 30%. Also, 37% of SeNPs have been released after 11 days of incubation of PCL/SeNPs in the implant exudate. These results suggest that the release of SeNPs from PCL was triggered by Pseudomonas aeruginosa PAO1 bacterium as well as by foreign body inflammatory reaction to implant. Furthermore, PCL/SeNPs microspheres were investigated in terms of their biocompatibility. For this purpose, cytotoxicity, the formation of reactive oxygen species (ROS), and genotoxicity were evaluated on HepG2 cell line. The interaction of PCL/SeNPs with phagocytic cell line (Raw 264.7 macrophages) was monitored as well. It was found that the microspheres in investigated concentration range had no acute cytotoxic effects. Finally, SeNPs, as well as PCL/SeNPs, showed a considerable antibacterial activity against Gram-positive bacteria: Staphylococcus aureus (ATCC 25923) and Staphylococcus epidermidis (ATCC 1228). These results suggest that PCL/SeNPs-based system could be an attractive platform for a prolonged prevention of infections accompanying implants. © 2018 Elsevier B.V.
PB  - Elsevier
T2  - Materials Science and Engineering C
T1  - Poly (ε-caprolactone) microspheres for prolonged release of selenium nanoparticles
SP  - 776
EP  - 789
VL  - 96
DO  - 10.1016/j.msec.2018.11.073
UR  - https://hdl.handle.net/21.15107/rcub_dais_4590
ER  - 
@article{
author = "Filipović, Nenad and Veselinović, Ljiljana and Ražić, Slavica and Jeremić, Sanja and Filipič, Metka and Žegura, Bojana and Tomić, Sergej and Čolić, Miodrag and Stevanović, Magdalena",
year = "2019",
abstract = "Poly (ε-caprolactone) (PCL) microspheres as a carrier for sustained release of antibacterial agent, selenium nanoparticles (SeNPs), were developed. The obtained PCL/SeNPs microspheres were in the range 1–4 μm with the encapsulation efficiency of about 90%. The degradation process and release behavior of SeNPs from PCL microspheres were investigated in five different degradation media: phosphate buffer solution (PBS), a solution of lipase isolated from the porcine pancreas in PBS, 0.1 M hydrochloric acid (HCl), Pseudomonas aeruginosa PAO1 cell-free extract in PBS and implant fluid (exudate) from the subcutaneously implanted sterile polyvinyl sponges which induce a foreign-body inflammatory reaction. The samples were thoroughly characterized by SEM, TEM, FTIR, XRD, PSA, DSC, confocal microscopy, and ICP-OES techniques. Under physiological conditions at neutral pH, a very slow release of SeNPs occurred (3 and 8% in the case of PBS or PBS + lipase, respectively and after 660 days), while in the acidic environment their presence was not detected. On the other hand, the release in the medium with bacterial extract was much more pronounced, even after 24 h (13%). After 7 days, the concentration of SeNPs reached a maximum of around 30%. Also, 37% of SeNPs have been released after 11 days of incubation of PCL/SeNPs in the implant exudate. These results suggest that the release of SeNPs from PCL was triggered by Pseudomonas aeruginosa PAO1 bacterium as well as by foreign body inflammatory reaction to implant. Furthermore, PCL/SeNPs microspheres were investigated in terms of their biocompatibility. For this purpose, cytotoxicity, the formation of reactive oxygen species (ROS), and genotoxicity were evaluated on HepG2 cell line. The interaction of PCL/SeNPs with phagocytic cell line (Raw 264.7 macrophages) was monitored as well. It was found that the microspheres in investigated concentration range had no acute cytotoxic effects. Finally, SeNPs, as well as PCL/SeNPs, showed a considerable antibacterial activity against Gram-positive bacteria: Staphylococcus aureus (ATCC 25923) and Staphylococcus epidermidis (ATCC 1228). These results suggest that PCL/SeNPs-based system could be an attractive platform for a prolonged prevention of infections accompanying implants. © 2018 Elsevier B.V.",
publisher = "Elsevier",
journal = "Materials Science and Engineering C",
title = "Poly (ε-caprolactone) microspheres for prolonged release of selenium nanoparticles",
pages = "776-789",
volume = "96",
doi = "10.1016/j.msec.2018.11.073",
url = "https://hdl.handle.net/21.15107/rcub_dais_4590"
}
Filipović, N., Veselinović, L., Ražić, S., Jeremić, S., Filipič, M., Žegura, B., Tomić, S., Čolić, M.,& Stevanović, M.. (2019). Poly (ε-caprolactone) microspheres for prolonged release of selenium nanoparticles. in Materials Science and Engineering C
Elsevier., 96, 776-789.
https://doi.org/10.1016/j.msec.2018.11.073
https://hdl.handle.net/21.15107/rcub_dais_4590
Filipović N, Veselinović L, Ražić S, Jeremić S, Filipič M, Žegura B, Tomić S, Čolić M, Stevanović M. Poly (ε-caprolactone) microspheres for prolonged release of selenium nanoparticles. in Materials Science and Engineering C. 2019;96:776-789.
doi:10.1016/j.msec.2018.11.073
https://hdl.handle.net/21.15107/rcub_dais_4590 .
Filipović, Nenad, Veselinović, Ljiljana, Ražić, Slavica, Jeremić, Sanja, Filipič, Metka, Žegura, Bojana, Tomić, Sergej, Čolić, Miodrag, Stevanović, Magdalena, "Poly (ε-caprolactone) microspheres for prolonged release of selenium nanoparticles" in Materials Science and Engineering C, 96 (2019):776-789,
https://doi.org/10.1016/j.msec.2018.11.073 .,
https://hdl.handle.net/21.15107/rcub_dais_4590 .
1
16
13
16